Modelo Semi-Empírico Médio Longitudinal de Ventos Termosféricos a 250 km para Períodos de Baixa Atividade Solar e Geomagnética

Wivaldo Dantas de Asevedo Júnior, Christiano Garnett Marques Brum, José Henrique Fernandez, Anderson Guimarães Guedes

Resumo


Neste trabalho é apresentado um modelo semi-empírico de ventos neutros termosféricos médios longitudinais para períodos de baixas atividades solar e geomagnética com dependência em hora local, dia do ano e latitude geográfica para 250 km de altitude. O modelo é denominado de SEATWIM (sigla em inglês para Semi Empirical Averaged Termospheric Wind Model) válido para períodos de baixa atividade solar e geomagnética. O SEATWIM foi construído a partir de uma análise estatística dos dados observados in situ obtidos pelo satélite UARS (Upper Atmosphere Research Satllite) por meio da carga útil WINDII (Wind Imaging Interferometer), onde os valores representativos para 250 km são obtidos pela média integrada em altitude entre 205 km e 275 km, e, a partir de uma análise estatístico-espectral, foi extraído comportamento diário e sazonal distribuídos em latitude geográfica. O modelo proposto exibe uma boa concordância em relação à climatologia dos dados observados pelo satélite para as componentes zonal e meridional dos ventos neutros termosférico em distintos períodos. Quando comparado ao comportamento dos dados observados, os índices estatísticos exibiram bons resultados, sendo os melhores resultados obtidos nos períodos de equinócio em ambas as componentes do vento termosférico. A validação estatística também exibiu melhores resultados para a componente zonal em comparação a componente meridional, para todos os períodos do ano. Os testes estatísticos utilizados indicam que o modelo SEATWIM assemelha-se ao modelo HWM14 (Horizontal Wind Model, versão 2014) principalmente em relação a componente zonal.

 

Semi Empirical Longitudinal Averaged Termospheric Wind Model at 250 km for Solar and Geomagnectic Activities Quiet Time

 

A B S T R A C T

This paper presents a semi empirical model of averaged longitudinal thermospheric neutral wind for quiet time periods of solar and geomagnetic activities with dependence on local time, day of the year and geographical latitude for 250 km of altitude, which was called SEATWIM (Semi Empirical Averaged Thermospheric Winds Model, the letter Q means quiet time of solar and magnectic activities). The SEATWIM was constructed from a statistical analysis of the observed in situ data obtained by the UARS satellite (Upper Atmosphere Research Satllite) through the WINDII payload equipment, where the representative values for 250 km are obtained by the average value integrated in altitude between 205 km and 275 km, and, from a statistical and spectral analysis, we extracted daily and seasonal behavior distributed over geographic latitude. The proposed model shows a good agreement with the climatology of the data observed by the satellite for the thermospheric neutral wind zonal and meridional directions. The statistical indices showed good results when compared to the behavior of the observed data being the best results obtained in the equinox periods in both thermospheric wind directions. Statistical validation also showed better results for the zonal component in comparison with the meridional component for all periods of the year. Statistical tests also indicate that the SEATWIM is similar to the HWM14 (Horizontal Wind Model, version 2014), mainly in the zonal direction.

key-words: Computational simulation, termospheric neutral wind, SEATWIM


Texto completo:

PDF

Referências


Akima, H., 1970. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. Journal of the Association for Computing Machinery 14, 589-602. doi:10.1145/321607.321609

Akima, H., 1991. Method of Univariate Interpolation that Has the Accuracy of a Third-degree Polynomial. Journal ACM Transactions on Mathematical Software 17, 341-366. doi:10.1145/114697.116810

Brum, C. G. M., Tepley, C. A., Fentzke, J. T., Robles, E., Santos, P. T. dos, & Gonzalez, and S. A., 2012. Long-term Changes in the Thermospheric Neutral Winds over Arecibo: Climatology based on over three decades of Fabry-Perot observations. Journal of Geophysical Research 117, A00H14. doi:10.1029/2011JA016458

Buonsanto, M. J., Salah, J. E., Miller, K. L., Oliver, W. L., Burnside, R. G., & Richards, P. G., 1989. Observations of neutral circulation at mid-latitudes during the Equinox Transition Study. Journal of Geophysical Research, 94 16987-16997. doi:10.1029/JA094iA12p16987

Burnside, R. G., & Tepley, C. A., 1989. Optical observations of thermospheric neutral winds at Arecibo between 1980 and 1987. Journal of Geophysical Research 94, 2711-2716. doi:10.1029/JA094iA03p02711

Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G., Skinner, W., W., Hays, P., Niciejewski, R. J., Larsen, M., She, C. Y., Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley, C. A., O’Brien, M. S., Bowman, J. R., Wu, Q., Murayama, Y., Kawamura, S., Reid, I. M., & Vincent, R. A., 2008. An empirical model of the Earth’s horizontal wind fields: HWM07: HWM07 EMPIRICAL WIND MODEL. Journal of Geophysical Research: Space Physics 113, A12304. doi:10.1029/2008JA013668

Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba, J. D., & Klenzing, J. H., 2015. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth an Space Science 2, 301-319. doi:10.1002/2014EA000089

Emmert, J. T., 2001. Climatology of upper thermospheric daytime neutral winds from satellite observations (Phdthesis). Utah State University.

Emmert, J. T., Drob, D. P., Shepherd, G. G., Hernandez, G., Jarvis, M. J., Meriwether, J. W., Niciejewski, R. J., Sipler, D. P., & Tepley, C. A., 2008. DWM07 global empirical model of upper thermospheric storm-induced disturbance winds: DWM07 THERMOSPHERIC WIND MODEL. Journal of Geophysical Research: Space Physics, 113, A11319. doi:10.1029/2008JA013541

Emmert, J. T., Fejer, B. G., Shepherd, G. G., & Solheim, B. H., 2002. Altitude dependence of middle and low-latitude daytime thermospheric disturbance winds measured by WINDII: WINDII DAYTIME DISTURBANCE WINDS. Journal of Geophysical Research: Space Physics, 107, SIA19-1 - SIA19-15. doi:10.1029/2002JA009646

Geisler, J. E., 1967. A numerical study of the wind system in the middle thermosphere. Journal of Atmospheric and Terrestrial Physics 29, 1469-1482. doi:10.1016/0021-9169(67)90100-6

Hedin, A. E. (1987). MSIS-86 Thermospheric Model. Journal of Geophysical Research 92, 4649-4662. doi:10.1029/JA092iA05p04649

Hedin, A. E., Biondi, M. A., Burnsider, R. G., Hernandez, G., Johnson, R. M., Killeen, T. L., Mazaudier, C., Meriwether, J. W., Salah, J. E., Sica, J. R., Smith, R. W., Spencer, N. W., Wickwar, V. B., & Virdi, T. S., 1991. Revised global model of thermosphere winds using satellite and ground-based observations. Journal of Geophysical Research (Space Physics) 96, 7657-7688. doi:10.1029/91JA00251

Hedin, A. E., Spencer, N. W., & Killen, T. L., 1988. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data. Journal of Geophysical Research 22, 9959-9978. doi:10.1029/JA093iA09p09959

Hernandez, G., & Roble, R. G., 1976. Direct measurements of nighttime thermospheric winds and temperatures, 2. Geomagnetic storms. Journal of Geophysical Research 81, 5173-5181. doi:10.1029/JA081i028p05173

Jacchia, L. G., 1965. Static diffusion models of the upper atmosphere with empirical temperature profiles. Smithsonian Contributions to Astrophysics 8, 213-257. doi:10.5479/si.00810231.8-9.213

Kohl, H., & King, J. W., 1967. Atmospheric winds between 100 and 700 km and their effects on the ionosphere. Journal of Atmospheric and Terrestrial Physics 29, 1045-1062. doi:10.1016/0021-9169(67)90139-0

Kumar, P., & Foufoula-Georgiou, E., 1997. Wavelet analysis for geophysical applications. Reviews of Geophysics 35, 385-412. doi:10.1029/97RG00427

Lee, S., Wolberg, G., & Shin, S. Y., 1997. Scattered data interpolation with multilevel B-splines. IEEE Transactions on Visualization and Computer Graphics 3, 228-244. doi:10.1109/2945.620490

Percival, D. B., & Walden, A. T., 2000. Wavelet Methods for Time SeriesAnalysis. doi:10.1017/CBO9780511841040

Reber, C. A., Trevathan, C. E., McNeal, R. J., & Luther, M. R., 1993. The Upper Atmosphere Research Satellite (UARS) mission. Journal of Geophysical Research 98, 10643-10647. doi:10.1029/92JD02828

Richmond, A. D., 1983. Thermospheric Dynamics and Electrodynamics. In R. L. Carovillano & J. M. Forbes (Orgs.), Solar-Terrestrial Physics: Principles and Theoretical Foundations 104, 523-607. doi:10.1007/978-94-009-7194-3_21

Rishbeth, H., 1971. The F-layer dynamo. Planetary and Space Science 19, 263-267. doi:10.1016/0032-0633(71)90205-4

Roble, R. G., Dickinson, R. E., & Ridley, E. C., 1977. Seasonal and solar cycle variations of the zonal mean circulation in the thermosphere. Journal of Geophysical Research 82, 5493-5504. doi:10.1029/JA082i035p05493

Salah, J. E., & Holt, J. M., 1974. Midlatitude thermospheric winds from incoherent scatter radar and theory. Radio Science 9, 301-313. doi:10.1029/RS009i002p00301

Santos, P. T., Brum, C. G. M., Tepley, C. A., Aponte, N., González, S. A., & Robles, E., 2011. Using incoherent scatter radar to investigate the neutral wind long-term trend over Arecibo: NEUTRAL WIND LONG-TERM TREND AT ARECIBO. Journal of Geophysical Research: Space Physics, 116, A00H13. doi:10.1029/2011JA016514

Shepherd, G. G. et al., 2001. UARS Wind Imaging Interferometer (WINDII) Level 3AL V011, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Recuperado 21 de fevereiro de 2017, de https://disc.gsfc.nasa.gov/datacollection/UARWI3AL_011.html

Shepherd, G. G., Thuillier, G., Gault, W. A., Solheim, B. H., Hersom, C., Alunni, J. M., Brun, J.-F., Brune, S., Charlot, P., Cogger, L. L., Desaulniers, D.-L., Evans, W. F. J., Gattinger, R. L., Girod, F., Harvie, D., Hum, R. H., Kendall, D. J. W., LLewellyn, E. J., Lowe, R. P., Ohrt, J., Pasternak, F., Peillet, O., Powell,I., Rochon, Y., Ward, W. E., Wiens, R. H., & Wimperis, J., 1993. WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite. Jounal os Geophysical Research 98, 10725-10750. doi:10.1029/93JD00227

Sipler, D. P., Luokkala, B. B., & Biondi, M. A., 1982. Fabry-Perot determinations of midlatitude F-region neutral winds and temperatures from 1975 to 1979. Planetary and Space Science 30, 1025-1032. doi:10.1016/0032-0633(82)90152-0

Spearman, C., 1904. The Proof and Measurement of Association between Two Things. he American Journal of Psychology 15, 72-101. doi:10.2307/1412159

Tepley, C. A., Robles, E., García, R., Santos, P. T., Brum, C. M., & Burnside, R. G., 2011. Directional trends in thermospheric neutral winds observed at Arecibo during the past three solar cycles: ARECIBO THERMOSPHERE NEUTRAL WIND TRENDS. Journal of Geophysical Research: Space Physics 116, A00H06. doi:10.1029/2010JA016172

Titheridge, J. E., 1995. Winds in the ionosphere—A review. Journal of Atmospheric and Terrestrial Physics 57, 1681-1714. doi:10.1016/0021-9169(95)00091-F

Vieira, L. E. A., Gonzalez, W. D., Echer, E., Guarnieri, F. L., Prestes, A., Gonzalez, A. L. C., Santos, J. C., Dal Lago, A., & Schuch, N. J., 2003. Multi-Scale Analysis of the Geomagnetic Symmetric Index (sym). Solar Physics 217, 383-394. doi:10.1023/B:SOLA.0000006858.86646.9f

Wilcoxon, F., 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1, 80-83. doi:10.2307/3001968

Willmott, C. J., 1981. On the validation of models. Physical geography 2, 184-194. doi:10.1080/02723646.1981.10642213




DOI: https://doi.org/10.26848/rbgf.v13.4.p1442-1462

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License