Um novo modelo climático simplificado: Global resolved energy balance with galactic cosmic rays (GREB-GCR) theory

Emerson Damasceno Oliveira, José Henrique Fernandez

Resumo


Este trabalho se fundamentou no desenvolvimento de um modelo climático capaz de simular os efeitos da teoria dos Raios Cósmicos Galácticos (RCG) sobre o sistema climático global. Este novo modelo está sendo chamado de Global Resolved Energy Balance from Galactic Cosmic Rays (GREB-GCR) Theory. O GREB-GCR está baseado no código do modelo GREB, um modelo climático simplificado que se baseia no balanço energético global. Os campos de superfície apontam que o modelo GREB-GCR consegue simular a temperatura do ar superficial considerando as forçantes antropogênicas (CO2) e naturais (RCG). O modelo ainda aponta um enfraquecimento recente à tendência de aquecimento global das últimas décadas, sendo este influenciado pelos RCG.

 

Global resolved energy balance with galactic cosmic rays (greb-gcr) theory: a new simplified climate model theory

 

A B S T R A C T

This work was based on the development of a climate model capable of simulating the effects of the Galactic Cosmic Rays theory (GCR) on the global climate system. This new model is being called the Global Resolved Energy Balance with Galactic Cosmic Rays (GREB-GCR) Theory. The GREB-GCR is based on the GREB model code, a simplified climate model that is based on the global energy balance. The calculated surface fields indicate that the GREB-GCR model can better simulate the surface air temperature considering anthropogenic (CO2) and natural (GCR) forcings. The model also points to a recent weakening of the global warming trend of recent decades, which is influenced by the GCR’s fluxes.

Key-words: GREB-GCR, Air temperature, Climate model, Cosmic Rays.


Palavras-chave


GREB-GCR; Temperatura do ar; Modelo climático; Raios Cósmicos

Texto completo:

PDF

Referências


Arrhenius, S., 1896. On the influence of carbonic acid on the air temperature of the ground.Philos Mag, v.5, p. 237–276, doi: 10.1080/14786449608620846

Bellon, G., 2011. Monsoon intraseasonal oscillation and land–atmosphereinteraction in an idealized model.ClimDyn, Vol. 37, Issue 5-6, pp. 1065-1079, .doi: 10.1007/s00382-010-0893-0

Biktash, L.Z., 2014. Evolution of Dst Index, cosmic rays and global temperature during solar cycles 20-23. Journal: Advances in Space Research, v.54, p. 2530.doi: 10.1016/j.asr.2014.08.016

Bray, J.R., 1971. Solar-Climate Relationships in the Post-Pleistocene. Science, New Series, v.171, p. 1242- 1243.

Budyko, M.I., 1969. The effect of solar radiation variations on the climate of the Earth.Tellus, v.21, p. 611–619. doi: 10.1111/j.2153-3490.1969.tb00466.x

Dickinson, R.E., 1975. Solar variability and the lower atmosphere. Bull Am Meteor Soc, v.56, p. 1240. doi: 10.1175/1520-0477(1975)056

Dommenget, D., Flöeter, J., 2011. Conceptual Understanding of Climate Change with a Globally Resolved Energy Balance Model.Climate dynamics, v.37, p. 2143-2165. doi: 10.1007/s00382-011-1026-0

Frigo, E., Pacca, I.G., Pereira-Filho, A.J., Rampelloto, P.H., Rigozo, N.R., 2013. Evidence for cosmic ray modulation in temperature records from the South Atlantic Magnetic Anomaly region. Ann. Geophys., v.31, 1833-1841. doi: 10.5194/angeo-31-1833-2013

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Jones, P.D., Lister, D.H., Osborn, T.J., Harpham, C., Salmon, M. and Morice, C.P., 2012. Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. Journal of Geophysical Research, Vol.117, D05127. doi:10.1029/2011JD017139

Jones, P.D., New, M., Parker, D.E., Martin, S. and Rigor, I.G., 1999. Surface air temperature and its variations over the last 150 years. Reviews of Geophysics, Vol.37, pp. 173-199. doi:10.1029/1999RG900002

Jones, P.D., Osborn, T.J., Briffa, K.R., Folland, C.K., Horton, B., Alexander, L.V., Parker, D.E. and Rayner, N.A., 2001. Adjusting for sampling density in grid-box land and ocean surface temperature time series. J. Geophys. Res.Vol. 106, pp.3371-3380. doi:10.1029/2000JD900564

Kennedy J.J., Rayner, N.A., Smith, R.O., Saunby, M. and Parker, D.E., 2011. Reassessing biases and other uncertainties in sea-surface temperature observations measured in situ since 1850 part 2: biases and homogenisation. Journal of Geophysical Research, Vol.116, D14104. doi:10.1029/2010JD015220

Kim, J. et al., 2016. Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Journal: Atmospheric Chemistry and Physics, v.16. p. 293-304. doi: 10.5194/acp-16-293-2016

Kirkby, J., 2007. Cosmic rays and Climate.SurvGeophys, v.28, p. 333-375. doi: 10.1007/s10712-008-9030-6

Lambert, F. H., Chiang, J. C. H., 2007. Control of land-ocean temperature contrast by ocean heat uptake. Geophysical Research Letters, Vol. 34. doi: 10.1029/2007GL029755

Lewis, N., Curry, J.A., 2014. The implications for climate sensitivity of AR5 forcing and heat uptake estimates.Climate Dynamics, v.45, pp 1009-1023. doi: 10.1007/s00382-014-2342-y

Lihua, M.A., 2017. Possible solar modulation of global land-ocean temperature.ActaGeodyn.Geomater., Vol.14, N°2, pp. 251-254. doi: 10.13168/AGG.2017.0008

Morice, C.P., Kennedy, J.J., Rayner, N.A. and Jones, P.D., 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. Journal of Geophysical Research, Vol. 117, D08101. doi:10.1029/2011JD017187

North, G.R., Cahalan, R.F.; Coakley, J.A., 1981. Energy balance climate models.Rev. Geophys. Space Phys. v.19, p. 91-121, doi: 10.1029/RG019i001p00091

Oliveira, E.D., Fernandez, J.H., Mendes, D., Spyrides, M.H.C., Gonçalves., W.A., 2019. Validação de um modelo climático simplificado adaptado para simular os efeitos do aumento da concentração de CO2 associados à teoria dos raios cósmicos galácticos. Revista Brasileira de Geografia Física, v. 12, n. 3. doi: 10.26848/rbgf.v12.3.p768-778

Osborn, T.J. and Jones, P.D., 2014. The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth System Science, Data6, p. 61-68. doi:10.5194/essd-6-61-2014

Owens, M.J., McCracken, K.G., Lockwood, M., Barnard, L., 2015. The heliospheric Hale cycle over the last 300 years and its implications for a “lost” late 18th century solar cycle. J. Space Weather Space Clim, v.5, A30. doi: 10.1051/swsc/2015032

Pudovkin, M.I., Veretenenko, S.V., 1997. Effects of the galactic cosmic ray variations on the solar radiation input in the lower atmosphere. J Atmos Sol Terr Phys, v.59, p. 1739–1746. doi: 10.1016/S1364-6826(96)00183-6

Puetz, S.J., Prokoph, A., Borchardt, G., 2016. Evaluating alternatives to the Milankovitch theory. Journal of Statistical Planning and Inference, v.170, p. 158-165. doi: 10.1016/j.jspi.2015.10.006

Rusov, V.D. et al., 2010. Galactic Cosmic Rays - Clouds Effect and Bifurcation Model of the Earth Global Climate. Part 1.Theory.Journal of Atmospheric and Solar-Terrestrial Physics, v.72, p. 398-408. doi: 10.1016/j.jastp.2009.12.007

Sellers, W.D., 1969. A global climatic model based on the energy balance of the Earth– atmosphere system. J. Appl. Meteor, v.8, p. 392–400. doi: 10.1175/1520-0450(1969)008

Storelvmo, T., Leirvik, T., Lohmann, U., Phillips, P.C.B, Wild, M., 2016. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity. Nature Geoscience, v9, pp 286-289. doi: 10.1038/NGEO2670

Svensmark, H., Enghoff, M.B., Pedersen, J.O.P., 2013. Response of cloud condensation nuclei (> 50 nm) to changes ion-nucleation.Journal: Physics Letters A, v.377, p. 2343-2347. doi: 10.1016/j.physleta.2013.07.004

Svensmark, H., Friis-Christensen, E., 1997. Variation in cosmic ray flux and global cloud coverage a missing link in solar–climate relationships. J Atmos Sol Terr Phys, v.59, p. 1225. doi: 10.1016/S1364-6826(97)00001-1

Tsonis, A.A., Deyle, E.R., May, R.M., Sugihara, G., Swanson, K., Verbeten, J.D and Wang, G., 2015. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature. PNAS, v.112, nº.11, p. 3253-3256. doi: 10.1073/pnas.1420291112




DOI: https://doi.org/10.26848/rbgf.v13.2.p842-854

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License