Economic feasibility of catalytic cracking of polymer waste for fuel production

Authors

DOI:

https://doi.org/10.51359/2238-6211.2023.258488

Keywords:

Pyrolysis, Polymers, Fuel, Environment, Renewable Energy.

Abstract

Plastic waste represents a major environmental concern, as it does not degrade in the environment and is constantly discarded. The types of polymers most used in the world are polyethylene and polypropylene, mainly for the production of packaging and, therefore, are the most discarded plastic waste in the environment. Some efforts are being applied to mitigate this situation, such as mechanical recycling, which transforms plastic waste into other products. But polymer cracking processes are promising alternatives, converting waste into lightweight materials that can be turned into commercial fuels. However, to be viable, these processes must consume as little resources as possible and, for this, feasibility experiments must be carried out to prove their application on a large scale and in small transformation units. This work presents a methodology for assembling a low-cost pyrolysis reactor to carry out the cracking of polymeric residues, and experiments were carried out with it, whose results showed the technical and economic viability of the described process, obtaining a rate of conversion of plastic into fuels of up to 96%, so it can be widely applied to reduce impacts caused by plastic disposal.

Author Biographies

Luís Roberto Cavalcanti da Silva, Universidade Federal Rural de Pernambuco (UFRPE)

Mestre em Ciências Ambientais, Universidade Federal Rural de Pernambuco

Thibério Pinho Costa Souza, Universidade Federal Rural de Pernambuco (UFRPE)

Doutor em Engenharia Química, Universidade Federal Rural de Pernambuco

References

ABNT. NBR 13230: Embalagens e acondicionamentos plásticos recicláveis – identificação e simbologia. Rio de Janeiro: ABNT, Rio de Janeiro, 2008.

ALEXY, P.; ANKLAM, E.; EMANS, T.; FURFARI, A.; GALGANI, F.; HANKE, G.; KOELMANS, A.; PANT, R.; SAVEYN, H.; KLUETTGEN, B. S. Managing the analytical challenges related to micro and nanoplastics in the environment and food: filling the knowledge gaps. Food Additives & Contaminants: Part A, v. 37, n. 1, p. 1-10, 2020. http://doi.org/10.1080/19440049.2019.1673905.

ALI, Z.; RATHNAKUMAR, P.; HUSSAIN, M. A.; ROMA, E.; NAGARAL, M.; UMAR, Md. Jet fuel produced from waste plastic with graphite as a catalyst. Materials Today: Proceedings, v. 52, p. 716-732, 2022. http://doi.org/10.1016/j.matpr.2021.10.131.

BAJUS, M.; HÁJEKOVÁ, E. Thermal cracking of the model seven components mixed plastics into oils/waxes. Petroleum & Coal, v. 52, p.164-172, 2010.

BARBARIAS, I.; ARTETXE, M.; LOPEZ, G.; ARREGI, A.; SANTAMARIA, L.; BILBAO, J.; OLAZAR, M. Catalyst performance in the HDPE pyrolysis-reforming under reaction-regeneration cycles. Catalysts, v. 9, n. 5, p. 414-428, 2019. http://doi.org/10.3390/catal9050414.

BEZERRA, F. A.; FIGUEIREDO, A. L.; ARAUJO, A. S.; GUEDES, A. P. M. A. Catalytic pyrolysis of LDPE using modified vermiculite as catalyst. Polímeros, v. 26, p. 55-59, 2016. http://doi.org/10.1590/0104-1428.1761.

BRASIL. Lei n. 13.033, de 24 de setembro de 2014. Dispõe sobre a adição obrigatória de biodiesel ao óleo diesel comercializado com o consumidor final. Diário Oficial da União, Brasília, DF, ano 151, n. 185, 25 set. 2014. Seção 1, p. 3.

EZE, W. U.; UMUNAKWE, R.; OBASI, H. C.; UGBAJA, M. I.; UCHE, C. C.; MADUFOR, I. C. Plastics waste management: a review of pyrolysis technology. Clean Technologies and Recycling, v. 1, n. 1, p. 50-69, 2021. http://doi.org/10.3934/ctr.2021003.

FENG, J.; KHAKIPOOR, B.; MAY, J.; MULFORD, M.; DAVIS, J.; SIMAN, K.; RUSSELL, G.; SMITH, A. W.; KING, H. An open-source dual-beam spectrophotometer for citizen-science-based water quality monitoring. Hardwarex, v. 10 p. e00241, 2021. http://doi.org/10.1016/j.ohx.2021.e00241.

GATKINE, P. R.; ZIMERMAN, G.; WARNER, E. A do-it-yourself spectrograph kit for educational outreach in optics and photonics. Optics Education and Outreach V, v. 10741, p.185-91, 2018. http://doi.org/10.1117/12.2321640.

GEYER, R. Production, use, and fate of synthetic polymers. Plastic Waste and Recycling, v. 14, p. 13-32, 2020. https://doi.org/10.1016/B978-0-12-817880-5.00002-5.

HERNÁNDEZ, M. R.; GARCÍA, A. N.; MARCILLA, A. Study of the gases obtained in thermal and catalytic flash pyrolysis of HDPE in a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, v. 73, n. 2, p. 314-322, 2005. http://doi.org/10.1016/j.jaap.2005.03.001.

JIA, C.; XIE, S.; ZHANG, W.; INTAN, N. N.; SAMPATH, J.; PFAENDTNER, J.; LIN, H. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem Catalysis, v. 1, n. 2, p. 437-455, 2021. http://doi.org/10.1016/j.checat.2021.04.002.

KAWAI, K.; TASAKI, T. Revisiting estimates of municipal solid waste generation per capita and their reliability. Journal of Material Cycles and Waste Management, v. 18, n. 1, p. 1-13, 2015. http://doi.org/10.1007/s10163-015-0355-1.

LESIE, H. A.; VAN VELZEN, M. J. M.; BRANDSMA, S. H.; VETHAAK, A. D.; GARCIA-VALLEJO, J. J.; LAMOREE, M. H. Discovery and quantification of plastic particle pollution in human blood. Environment International, v. 163, p. 107199, 2022. https://doi.org/10.1016/j.envint.2022.107199.

LESKI, K.; BERKOWICZ-PŁATEK, G. Pyrolysis of plastic wastes as a way of obtaining valuable chemical raw materials. Chemical Review and Letters, v. 4, n. 2, p. 92-97, 2021. http://doi.org/10.22034/crl.2021.272418.1101.

MONTENEGRO, M.; VIANNA, M.; TELES, D. B. (org.). Atlas do Plástico: fatos e números sobre o mundo dos polímeros sintéticos. Fundação Heirich Böll. Rio de Janeiro, 2020. <https://www.br.boell.org/pt-br/2020/11/29/atlas-do-plastico>. Accessed 13 August 2022.

NOFENDRI, Y. Perbandingan prestasi reaktor pirolisis dengan menggunakan sampah PET dan HDPE. Jurnal Kajian Teknik Mesin, v. 6, n. 2, p. 24-30, 2021. http://doi.org/10.52447/jktm.v6i2.4985.

PAL, S.; KUMAR, A.; SHARMA, A. K.; GHODKE, P. K.; PANDEY, S.; PATEL, A. Recent advances in catalytic pyrolysis of municipal plastic waste for the production of hydrocarbon fuels. Processes, v. 10, n. 8, p. 1497-1520, 2022. http://doi.org/10.3390/pr10081497.

QURESHI, M. S.; OASMAA, A.; PIHKOLA, H.; DEVIATKIN, I.; TENHUNEN, A.; MANNILA, J.; MINKKINEN, H.; POHJAKALLIO, M.; LAINE-YLIJOKI, J. Pyrolysis of plastic waste: opportunities and challenges. Journal of Analytical and Applied Pyrolysis, v. 152, p. 104804, 2020. http://doi.org/10.1016/j.jaap.2020.104804.

RAJCA, P.; POSKART, A.; CHRUBASIK, M.; SAJDAK, M.; ZAJEMSKA, M.; SKIBIńSKI, A.; KOROMBEL, A. Technological and economic aspect of Refuse Derived Fuel pyrolysis. Renewable Energy, v. 161, p. 482-494, 2020. http://doi.org/10.1016/j.renene.2020.07.104.

ROGERS, J. G.; BRAMMER, J. G. Estimation of the production cost of fast pyrolysis bio-oil. Biomass and Bioenergy, v. 36, p. 208-217, 2012. http://doi.org/10.1016/j.biombioe.2011.10.028.

ROY, P.; MOHANTY, A. K.; MISRA, M. Microplastics in the ecosystems: their implications and mitigation pathway. Environmental Science: Advances, v. 1, n. 1, p. 9-29, 2022. http://doi.org/10.1039/d1va00012h.

SARKER, M. Converting waste plastic to hydrocarbon fuel materials. Energy Engineering, v. 108, n. 2, p. 35-43, 2011. http://doi.org/10.1080/01998595.2011.10389018.

SHARUDDIN, S. D. A.; ABNISA, F.; DAUD, W. M. A. W.; AROUA, M. K. A review on pyrolysis of plastic wastes. Energy Conversion and Management, v. 115, p. 308-326, 2016. http://doi.org/10.1016/j.enconman.2016.02.037.

SILVA, W. R. F.; SUAREZ, W. T.; REIS, C.; SANTOS, V. B.; CARVALHO, F. A.; REIS, E. L.; VICENTINI, F. C. Multifunctional Webcam Spectrophotometer for Performing Analytical Determination and Measurements of Emission, Absorption, and Fluorescence Spectra. Journal of Chemical Education, v. 98, n. 4, p. 1442-1447, 2021. http://doi.org/10.1021/acs.jchemed.0c01085.

SRININGSIH, W.; SAERODJI, M. G.; TRISUNARYANTI, W.; TRIYONO; ARMUNANTO, R.; FALAH, I. I. Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co and Co-Mo Metals. Procedia Environmental Sciences, v. 20, p. 215-224, 2014. http://doi.org/10.1016/j.proenv.2014.03.028.

SUNDARRAJ, M.; MEIKANDAN, M. Liquefied fuel from plastic wastes using nitro-cracking method with refinery distillation bubble cap plate column. Chemical Industry and Chemical Engineering Quarterly, v. 28, n. 1, p. 39-46, 2021. http://doi.org/10.2298/ciceq200907014s.

THI, H. D.; DJOKIC, M. R.; VAN GEEM, K. M. Detailed group-type characterization of plastic-waste pyrolysis oils: by comprehensive two-dimensional gas chromatography including linear, branched, and di-olefins. Separations, v. 8, n. 7, p. 103-120, 2021. http://doi.org/10.3390/separations8070103.

TOUSSAINT, B.; RAFFAEL, B.; ANGERS-LOUSTAU, A.; GILLILAND, D.; KESTENS, V.; PETRILLO, M.; RIO-ECHEVARRIA, I. M.; EEDE, G. D. Review of micro and nanoplastic contamination in the food chain. Food Additives & Contaminants: Part A, v. 36, n. 5, p. 639-673, 2019. http://doi.org/10.1080/19440049.2019.1583381.

VARGAS, M.; TUPAYACHY-QUISPE, D.; ROUDET, F.; DUQUESNE, S.; ALMIRÓN, J. Catalytic pyrolysis of plastic materials using natural zeolite catalysts synthesized from volcanic ash. Iop Conference Series: Materials Science and Engineering, v. 1150, n. 1, p. 012018, 2021. http://doi.org/10.1088/1757-899x/1150/1/012018.

WATT, E.; PICARD, M.; MALDONADO, B.; ABDELWAHAB, M. A.; MIELEWSKI, D. F.; DRZAL, L. T.; MISRA, M.; MOHANTY, A. K. Ocean plastics: environmental implications and potential routes for mitigation - a perspective. Rsc Advances, v. 11, n. 35, p. 21447-21462, 2021. http://doi.org/10.1039/d1ra00353d.

WOOLF, D.; LEHMANN, J.; JOSEPH, S.; CAMPBELL, C.; CHRISTO, F. C.; ANGENENT, L. T. An open-source biomass pyrolysis reactor. Biofuels, Bioproducts and Biorefining, v. 11, n. 6, p. 945-954, 2017. http://doi.org/10.1002/bbb.1814.

ZAJEMSKA, M.; MAGDZIARZ, A.; IWASZKO, J.; SKRZYNIARZ, M.; POSKART, A. Numerical and experimental analysis of pyrolysis process of RDF containing a high percentage of plastic waste. Fuel, v. 320, p. 123981, 2022. http://doi.org/10.1016/j.fuel.2022.123981.

ZHOU, N.; DAI, L.; LV, Y.; LI, H.; DENG, W.; GUO, F.; CHEN, P.; LEI, H.; RUAN, R. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal, v. 418, p. 129412, 2021. http://doi.org/10.1016/j.cej.2021.129412.

Published

2023-10-11

How to Cite

Silva, L. R. C. da, & Souza, T. P. C. (2023). Economic feasibility of catalytic cracking of polymer waste for fuel production. Revista De Geografia, 40(2), 268–286. https://doi.org/10.51359/2238-6211.2023.258488