Viabilidad económica del craqueo catalítico de residuos de polímeros para la producción de combustible

Autores/as

DOI:

https://doi.org/10.51359/2238-6211.2023.258488

Palabras clave:

Pirólisis, Polímeros, Combustible, Medio Ambiente, Energía Renovable

Resumen

Los desechos plásticos representan una preocupación ambiental importante, ya que no se degradan en el medio ambiente y son desechados constantemente. Los tipos de polímeros más utilizados en el mundo son el polietileno y el polipropileno, principalmente para la producción de envases y, por tanto, son los residuos plásticos más desechados en el medio ambiente. Se están aplicando algunos esfuerzos para mitigar esta situación, como el reciclaje mecánico, que transforma los residuos plásticos en otros productos. Pero los procesos de craqueo de polímeros son alternativas prometedoras, ya que convierten los desechos en materiales livianos que pueden convertirse en combustibles comerciales. Sin embargo, para ser viables, estos procesos deben consumir la menor cantidad de recursos posible y, para ello, se deben realizar experimentos de factibilidad para probar su aplicación a gran escala y en pequeñas unidades de transformación. Este trabajo presenta una metodología para el montaje de un reactor de pirólisis de bajo costo para realizar el craqueo de residuos poliméricos, y en él se realizaron experimentos, cuyos resultados demostraron la viabilidad técnica y económica del proceso descrito, obteniendo una tasa de conversión de plástico en combustibles hasta un 96%, por lo que puede aplicarse ampliamente para reducir los impactos causados por la eliminación de plásticos.

Biografía del autor/a

Luís Roberto Cavalcanti da Silva, Universidade Federal Rural de Pernambuco (UFRPE)

Mestre em Ciências Ambientais, Universidade Federal Rural de Pernambuco

Thibério Pinho Costa Souza, Universidade Federal Rural de Pernambuco (UFRPE)

Doutor em Engenharia Química, Universidade Federal Rural de Pernambuco

Citas

ABNT. NBR 13230: Embalagens e acondicionamentos plásticos recicláveis – identificação e simbologia. Rio de Janeiro: ABNT, Rio de Janeiro, 2008.

ALEXY, P.; ANKLAM, E.; EMANS, T.; FURFARI, A.; GALGANI, F.; HANKE, G.; KOELMANS, A.; PANT, R.; SAVEYN, H.; KLUETTGEN, B. S. Managing the analytical challenges related to micro and nanoplastics in the environment and food: filling the knowledge gaps. Food Additives & Contaminants: Part A, v. 37, n. 1, p. 1-10, 2020. http://doi.org/10.1080/19440049.2019.1673905.

ALI, Z.; RATHNAKUMAR, P.; HUSSAIN, M. A.; ROMA, E.; NAGARAL, M.; UMAR, Md. Jet fuel produced from waste plastic with graphite as a catalyst. Materials Today: Proceedings, v. 52, p. 716-732, 2022. http://doi.org/10.1016/j.matpr.2021.10.131.

BAJUS, M.; HÁJEKOVÁ, E. Thermal cracking of the model seven components mixed plastics into oils/waxes. Petroleum & Coal, v. 52, p.164-172, 2010.

BARBARIAS, I.; ARTETXE, M.; LOPEZ, G.; ARREGI, A.; SANTAMARIA, L.; BILBAO, J.; OLAZAR, M. Catalyst performance in the HDPE pyrolysis-reforming under reaction-regeneration cycles. Catalysts, v. 9, n. 5, p. 414-428, 2019. http://doi.org/10.3390/catal9050414.

BEZERRA, F. A.; FIGUEIREDO, A. L.; ARAUJO, A. S.; GUEDES, A. P. M. A. Catalytic pyrolysis of LDPE using modified vermiculite as catalyst. Polímeros, v. 26, p. 55-59, 2016. http://doi.org/10.1590/0104-1428.1761.

BRASIL. Lei n. 13.033, de 24 de setembro de 2014. Dispõe sobre a adição obrigatória de biodiesel ao óleo diesel comercializado com o consumidor final. Diário Oficial da União, Brasília, DF, ano 151, n. 185, 25 set. 2014. Seção 1, p. 3.

EZE, W. U.; UMUNAKWE, R.; OBASI, H. C.; UGBAJA, M. I.; UCHE, C. C.; MADUFOR, I. C. Plastics waste management: a review of pyrolysis technology. Clean Technologies and Recycling, v. 1, n. 1, p. 50-69, 2021. http://doi.org/10.3934/ctr.2021003.

FENG, J.; KHAKIPOOR, B.; MAY, J.; MULFORD, M.; DAVIS, J.; SIMAN, K.; RUSSELL, G.; SMITH, A. W.; KING, H. An open-source dual-beam spectrophotometer for citizen-science-based water quality monitoring. Hardwarex, v. 10 p. e00241, 2021. http://doi.org/10.1016/j.ohx.2021.e00241.

GATKINE, P. R.; ZIMERMAN, G.; WARNER, E. A do-it-yourself spectrograph kit for educational outreach in optics and photonics. Optics Education and Outreach V, v. 10741, p.185-91, 2018. http://doi.org/10.1117/12.2321640.

GEYER, R. Production, use, and fate of synthetic polymers. Plastic Waste and Recycling, v. 14, p. 13-32, 2020. https://doi.org/10.1016/B978-0-12-817880-5.00002-5.

HERNÁNDEZ, M. R.; GARCÍA, A. N.; MARCILLA, A. Study of the gases obtained in thermal and catalytic flash pyrolysis of HDPE in a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, v. 73, n. 2, p. 314-322, 2005. http://doi.org/10.1016/j.jaap.2005.03.001.

JIA, C.; XIE, S.; ZHANG, W.; INTAN, N. N.; SAMPATH, J.; PFAENDTNER, J.; LIN, H. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem Catalysis, v. 1, n. 2, p. 437-455, 2021. http://doi.org/10.1016/j.checat.2021.04.002.

KAWAI, K.; TASAKI, T. Revisiting estimates of municipal solid waste generation per capita and their reliability. Journal of Material Cycles and Waste Management, v. 18, n. 1, p. 1-13, 2015. http://doi.org/10.1007/s10163-015-0355-1.

LESIE, H. A.; VAN VELZEN, M. J. M.; BRANDSMA, S. H.; VETHAAK, A. D.; GARCIA-VALLEJO, J. J.; LAMOREE, M. H. Discovery and quantification of plastic particle pollution in human blood. Environment International, v. 163, p. 107199, 2022. https://doi.org/10.1016/j.envint.2022.107199.

LESKI, K.; BERKOWICZ-PŁATEK, G. Pyrolysis of plastic wastes as a way of obtaining valuable chemical raw materials. Chemical Review and Letters, v. 4, n. 2, p. 92-97, 2021. http://doi.org/10.22034/crl.2021.272418.1101.

MONTENEGRO, M.; VIANNA, M.; TELES, D. B. (org.). Atlas do Plástico: fatos e números sobre o mundo dos polímeros sintéticos. Fundação Heirich Böll. Rio de Janeiro, 2020. <https://www.br.boell.org/pt-br/2020/11/29/atlas-do-plastico>. Accessed 13 August 2022.

NOFENDRI, Y. Perbandingan prestasi reaktor pirolisis dengan menggunakan sampah PET dan HDPE. Jurnal Kajian Teknik Mesin, v. 6, n. 2, p. 24-30, 2021. http://doi.org/10.52447/jktm.v6i2.4985.

PAL, S.; KUMAR, A.; SHARMA, A. K.; GHODKE, P. K.; PANDEY, S.; PATEL, A. Recent advances in catalytic pyrolysis of municipal plastic waste for the production of hydrocarbon fuels. Processes, v. 10, n. 8, p. 1497-1520, 2022. http://doi.org/10.3390/pr10081497.

QURESHI, M. S.; OASMAA, A.; PIHKOLA, H.; DEVIATKIN, I.; TENHUNEN, A.; MANNILA, J.; MINKKINEN, H.; POHJAKALLIO, M.; LAINE-YLIJOKI, J. Pyrolysis of plastic waste: opportunities and challenges. Journal of Analytical and Applied Pyrolysis, v. 152, p. 104804, 2020. http://doi.org/10.1016/j.jaap.2020.104804.

RAJCA, P.; POSKART, A.; CHRUBASIK, M.; SAJDAK, M.; ZAJEMSKA, M.; SKIBIńSKI, A.; KOROMBEL, A. Technological and economic aspect of Refuse Derived Fuel pyrolysis. Renewable Energy, v. 161, p. 482-494, 2020. http://doi.org/10.1016/j.renene.2020.07.104.

ROGERS, J. G.; BRAMMER, J. G. Estimation of the production cost of fast pyrolysis bio-oil. Biomass and Bioenergy, v. 36, p. 208-217, 2012. http://doi.org/10.1016/j.biombioe.2011.10.028.

ROY, P.; MOHANTY, A. K.; MISRA, M. Microplastics in the ecosystems: their implications and mitigation pathway. Environmental Science: Advances, v. 1, n. 1, p. 9-29, 2022. http://doi.org/10.1039/d1va00012h.

SARKER, M. Converting waste plastic to hydrocarbon fuel materials. Energy Engineering, v. 108, n. 2, p. 35-43, 2011. http://doi.org/10.1080/01998595.2011.10389018.

SHARUDDIN, S. D. A.; ABNISA, F.; DAUD, W. M. A. W.; AROUA, M. K. A review on pyrolysis of plastic wastes. Energy Conversion and Management, v. 115, p. 308-326, 2016. http://doi.org/10.1016/j.enconman.2016.02.037.

SILVA, W. R. F.; SUAREZ, W. T.; REIS, C.; SANTOS, V. B.; CARVALHO, F. A.; REIS, E. L.; VICENTINI, F. C. Multifunctional Webcam Spectrophotometer for Performing Analytical Determination and Measurements of Emission, Absorption, and Fluorescence Spectra. Journal of Chemical Education, v. 98, n. 4, p. 1442-1447, 2021. http://doi.org/10.1021/acs.jchemed.0c01085.

SRININGSIH, W.; SAERODJI, M. G.; TRISUNARYANTI, W.; TRIYONO; ARMUNANTO, R.; FALAH, I. I. Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co and Co-Mo Metals. Procedia Environmental Sciences, v. 20, p. 215-224, 2014. http://doi.org/10.1016/j.proenv.2014.03.028.

SUNDARRAJ, M.; MEIKANDAN, M. Liquefied fuel from plastic wastes using nitro-cracking method with refinery distillation bubble cap plate column. Chemical Industry and Chemical Engineering Quarterly, v. 28, n. 1, p. 39-46, 2021. http://doi.org/10.2298/ciceq200907014s.

THI, H. D.; DJOKIC, M. R.; VAN GEEM, K. M. Detailed group-type characterization of plastic-waste pyrolysis oils: by comprehensive two-dimensional gas chromatography including linear, branched, and di-olefins. Separations, v. 8, n. 7, p. 103-120, 2021. http://doi.org/10.3390/separations8070103.

TOUSSAINT, B.; RAFFAEL, B.; ANGERS-LOUSTAU, A.; GILLILAND, D.; KESTENS, V.; PETRILLO, M.; RIO-ECHEVARRIA, I. M.; EEDE, G. D. Review of micro and nanoplastic contamination in the food chain. Food Additives & Contaminants: Part A, v. 36, n. 5, p. 639-673, 2019. http://doi.org/10.1080/19440049.2019.1583381.

VARGAS, M.; TUPAYACHY-QUISPE, D.; ROUDET, F.; DUQUESNE, S.; ALMIRÓN, J. Catalytic pyrolysis of plastic materials using natural zeolite catalysts synthesized from volcanic ash. Iop Conference Series: Materials Science and Engineering, v. 1150, n. 1, p. 012018, 2021. http://doi.org/10.1088/1757-899x/1150/1/012018.

WATT, E.; PICARD, M.; MALDONADO, B.; ABDELWAHAB, M. A.; MIELEWSKI, D. F.; DRZAL, L. T.; MISRA, M.; MOHANTY, A. K. Ocean plastics: environmental implications and potential routes for mitigation - a perspective. Rsc Advances, v. 11, n. 35, p. 21447-21462, 2021. http://doi.org/10.1039/d1ra00353d.

WOOLF, D.; LEHMANN, J.; JOSEPH, S.; CAMPBELL, C.; CHRISTO, F. C.; ANGENENT, L. T. An open-source biomass pyrolysis reactor. Biofuels, Bioproducts and Biorefining, v. 11, n. 6, p. 945-954, 2017. http://doi.org/10.1002/bbb.1814.

ZAJEMSKA, M.; MAGDZIARZ, A.; IWASZKO, J.; SKRZYNIARZ, M.; POSKART, A. Numerical and experimental analysis of pyrolysis process of RDF containing a high percentage of plastic waste. Fuel, v. 320, p. 123981, 2022. http://doi.org/10.1016/j.fuel.2022.123981.

ZHOU, N.; DAI, L.; LV, Y.; LI, H.; DENG, W.; GUO, F.; CHEN, P.; LEI, H.; RUAN, R. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal, v. 418, p. 129412, 2021. http://doi.org/10.1016/j.cej.2021.129412.

Publicado

2023-10-11

Cómo citar

Silva, L. R. C. da, & Souza, T. P. C. (2023). Viabilidad económica del craqueo catalítico de residuos de polímeros para la producción de combustible. Revista De Geografia, 40(2), 268–286. https://doi.org/10.51359/2238-6211.2023.258488