Agroconnect -Wireless Data Transmission Technology Decision Support System for IoT in Agribusiness
DOI:
https://doi.org/10.51359/2317-0115.2021.252701Keywords:
internet of things, agribusiness, wireless data transmission technologiesAbstract
Agribusiness in Brazil has differentiated itself from other markets due to thelarge investment in technological solutions that enable greater efficiency in its entireproduction chain. Among the technologies that have been most invested, the Internet of Things can be highlighted, which allows sensing and acting in real time. In this context,identifying which data transmission technology is the most suitable for a given IoTsolutionisarelevant problem,sincethe wrongselectionofdatatransmissiontechnologyin an IoT project may result in an inadequate, or inefficient, solution for agribusiness, whereas there are different scenarios, with different geographic areas, different crops and seeds, varied reliefs, among several other characteristics that should be considered. This work aims to investigate the characteristics of heterogeneous wireless data transmissiontechnologies in IoT scenarios for agribusiness, as well as to propose a web application that, given the characteristics of an IoT scenario in agribusiness, presents the best wireless data transmission technologies to DSS - IoT projects for Agribusiness.References
ABOUZAR, P., MICHELSON, D. G., AND HAMDI, M. (2016). Rssi-Based Distributed Self- Localization for Wireless Sensor Networks Used in Precision Agriculture. IEEE Transactions on Wireless Communications, v. 15, n. 10, p. 6638-6650, 2016.
ALIGER. (2019, 09 22). Os Sensores Iot E Suas Aplicações na Agricultura e Pecuária. Retrieved from: https://www.aliger.com.br/blog/conheca-os-sensores-iot-e-sua-aplicabilidade-na-agricultura-e-pecuaria/
BAGGIO, A. (2005, June). Wireless Sensor Networks in Precision Agriculture. In ACM Workshop on Real-World Wireless Sensor Networks (REALWSN 2005), Stockholm, Sweden (Vol. 20, pp. 1567-1576).
FERRARI, A. AND SALES, G. G. R. (2017). Smart Farming: Análise bibliométrica sobre o tema. Universidade Estadual de Campinas, Faculdade Aplicada de Ciências Aplicadas.
GAKURU, M., WINTERS, K., AND STEPMAN, F. (2008). Innovative Farmer Advisory Services using Ict. In W3C Workshop “Africa Perspective on the Role of Mobile Technologies in Fostering Social Development”, Maputo, Mozambique (pp. 1-2).
GUERRERO-IBAÑEZ, J. A., et al (2017). Sgreenh-Iot: Plataforma Iot para Agricultura de Precisión. Sistemas, Cibernética E Informática, 14(2).
HAYES, J., CROWLEY, K., AND DIAMOND, D. (2005). Simultaneous Web-Based Real-Time Temperature Monitoring Using Multiple Wireless Sensor Networks. In SENSORS, 2005 IEEE, pages 4 pp.–.
HEBEL, M. A. (2006). Meeting Wide-Area Agricultural Data Acquisition and Control Challenges Through Zigbee Wireless Network Technology. In Computers in Agriculture and Natural Resources, 23-25 July 2006, Orlando Florida. American Society of Agricultural and Biological Engineers.
MORIJO, J. P. D. S. (2019). Arquitetura Multissensorial em Fog Computing para Dispositivos Iot com Foco em Agricultura De Precisão.
LEE, W. S., SCHUELLER, J. K., & BURKS, T. F. (2005). Wagon-Based Silage Yield Mapping System. Agricultural Engineering International: CIGR Journal.
MORAIS, R., FERNANDES, et al. (2008). A Zigbee Multi-Powered Wireless Acquisition Device for Remote Sensing Applications in Precision Viticulture. Computers and Electronics in Agriculture, 62(2): 94–106.
NAMANI, S., & GONEN, B. (2020, March). Smart Agriculture Based on Iot and Cloud Computing. In 2020 3rd International Conference on Information and Computer Technologies (ICICT) (pp. 553-556). IEEE.
NORVIG, PETER AND RUSSEL, STUART. (2013). Modelo do vizinho mais próximo. Inteligência Artificial. Rio de Janeiro: Elsevier Editora Ltds, 2013, Vol. 3, p. 1152.
NUNES, S. P. (2007). O Desenvolvimento Da Agricultura Brasileira e Mundial e a Idéia de Desenvolvimento Rural. Departamento de Estudos Socio-Econômicos Rurais. Boletim Eletrônico, Conjuntura Agricola, (157).
POPLI, S., JHA, R. K., & JAIN, S. (2018). A Survey on Energy Efficient Narrowband Internet of Things (Nbiot): Architecture, Application and Challenges. IEEE Access, 7, 16739-16776.
RAMYA, B., T, T., J, T., AND ANITA, E. A. M. (2018). A Survey on Smart Agriculture Using Internet of Things. Internationa Journal of Engineering Research & Technology (IJERT) NCICCT - Volume 6 – Issue 3.
RUIZ-GARCIA, L., et al. (2009). A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors, 9 (6): 4728–4750.
SOKOLOVA, LARA. In: O que saber sobre agricultura inteligente usando IoT: Como a tecnologia está transformando a produção de alimentos e os desafios de sua implementação e segurança dos sistemas. Forbes Agro, 24 set. 2021. Disponível em: https://forbes.com.br/forbesagro/2021/09/o-que-saber-sobre-agricultura-inteligente-usando-iot/. Acesso em: 24 nov. 2021.
TEIXEIRA, G. B., & ALMEIDA, J. V. P. D. (2017). Rede LoRa® e protocolo LoRaWAN® aplicados na agricultura de precisão no Brasil, (Bachelor's thesis, Universidade Tecnológica Federal do Paraná).
TONGKE, FAN (2013). Smart agriculture based on Cloud Computing and IOT. Journal of Convergence Information Technology, v. 8, n. 2, p. 210-216.
Zhang, W., Kantor, G., & Singh, S. (2004, November). Integrated Wireless Sensor/Actuator Networks in an Agricultural Application. In Proceedings of the 2nd international conference on Embedded networked sensor systems (pp. 317-317).
Downloads
Published
Issue
Section
License
Os trabalhos submetidos são de responsabilidade exclusiva de sua autoria, que preserva o seu direito autoral.
É permitida a citação dos trabalhos publicados sem prévia autorização desde que seja explícita a menção à fonte da RMP