Ética em sistemas de IA

um olhar sobre a injustiça algorítmica e a deficiência

Auteurs

DOI :

https://doi.org/10.51359/2317-0115.2023.260751

Mots-clés :

contratação de pessoas, ética, inteligência artificial, justiça algorítmica, pessoa com deficiência

Résumé

Este estudo se insere na interseção entre ética, tecnologia e a discriminação algorítmica enfrentada por pessoas com deficiência (PCD) em processos de seleção de emprego, especialmente aqueles envolvendo sistemas de inteligência artificial (IA). O objetivo central é analisar a discriminação algorítmica enfrentada por PCD durante os processos de seleção de emprego mediados por IA. Este estudo busca preencher uma lacuna na pesquisa, pois a discriminação contra PCD raramente é abordada nos estudos sobre vieses algorítmicos em sistemas de contratação automatizada. O método utilizado combina análise temática, que identifica temas e padrões nos dados, com interpretação indutiva para aprofundar a compreensão. Os resultados revelam que a injustiça algorítmica contra PCD é subexplorada, mesmo em discussões sobre vieses algorítmicos, evidenciando a falta de proteção contra preconceitos relacionados à deficiência. Além disso, destaca a importância de incorporar princípios éticos nas decisões tomadas por sistemas automatizados. Esse estudo visa estimular o diálogo e conscientização sobre a injustiça algorítmica contra PCD, promovendo a ética e a inclusão no ambiente de seleção de emprego mediado pela IA.

Références

ALEXIADOU, Elisavet Athanasia. Artificial Intelligence in Disability Employment: Incorporating a Human Rights Approach. In: Law and Artificial Intelligence: Regulating AI and Applying AI in Legal Practice. The Hague: TMC Asser Press, 2022. p. 135-148.

ALMEIDA, Denise; SHMARKO, Konstantin; LOMAS, Elizabeth. The ethics of facial recognition technologies, surveillance, and accountability in an age of artificial intelligence: a comparative analysis of US, EU, and UK regulatory frameworks. AI and Ethics, v. 2, n. 3, p. 377-387, 2022.

AYRES, Lioness. Thematic coding and analysis. The SAGE encyclopedia of qualitative research methods, v. 1, p. 876-868, 2008.

ARBIX, Glauco. A trAnspArênciA no centro dA construção de umA iA éticA. Novos estudos CEBRAP, v. 39, p. 395-413, 2020.

BARIFFI, Francisco José. Artificial Intelligence, Human Rights and Disability. Pensar-Revista de Ciências Jurídicas, v. 26, n. 2, 2021.

BOGEN, Miranda; RIEKE, Aaron. Help wanted: An examination of hiring algorithms, equity, and bias. 2018.

BUYL, Maarten et al. Tackling Algorithmic Disability Discrimination in the Hiring Process: An Ethical, Legal and Technical Analysis. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency. 2022. p. 1071-1082.

BRASIL, Lei Nº. 13.146 de 6 de julho de 2015. Institui a Lei Brasileira de Inclusão da Pessoa com Deficiência. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 2015.

COMISSÃO EUROPEIA. Proposal for a Regulation laying down harmonized rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain Union legislative acts. COM (2021) 206 final (2021). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206

COZMAN, Fabio Gagliardi; KAUFMAN, Dora. Viés no aprendizado de máquina em sistemas de inteligência artificial: a diversidade de origens e os caminhos de mitigação. Revista USP, n. 135, p. 195-210, 2022.

DASTIN, Jeffrey. Amazon scraps secret AI recruiting tool that showed bias against women. In: Ethics of data and analytics. Auerbach Publications, 2022. p. 296-299.

DE FREITAS, Julian et al. Doubting driverless dilemmas. Perspectives on psychological science, v. 15, n. 5, p. 1284-1288, 2020.

FAVA, Rui. Trabalho, educação e inteligência artificial: a era do indivíduo versátil. Penso Editora, 2018.

FRENCH, Shannon E. War and Technology: Should Data Decide Who Lives, Who Dies?. Ethics in the AI, technology, and information age. Rowman & Littlefield, 2022. p. 277.

FRENCH, Shannon E.; LINDSAY, Lisa N. Artificial Intelligence in Military Decision-Making: Avoiding Ethical and Strategic Perils with an Option-Generator Model. In: Emerging Military Technologies. Brill Nijhoff, 2022. p. 53-74.

HANCOCK, P. A.; LEE, John D.; SENDERS, John W. Attribution errors by people and intelligent machines. Human factors, p. 00187208211036323, 2021.

HOUSER, Kimberly A. Can AI solve the diversity problem in the tech industry: Mitigating noise and bias in employment decision-making. Stan. Tech. L. Rev., v. 22, p. 290, 2019.

HUANG, Ming-Hui; RUST, Roland T. Artificial intelligence in service. Journal of service research, v. 21, n. 2, p. 155-172, 2018.

KAUR, Davinder et al. Trustworthy artificial intelligence: a review. ACM Computing Surveys (CSUR), v. 55, n. 2, p. 1-38, 2022.

KALLURI, Pratyusha et al. Don’t ask if artificial intelligence is good or fair, ask how it shifts power. Nature, v. 583, n. 7815, p. 169-169, 2020.

LILLYWHITE, Aspen; WOLBRING, Gregor. Coverage of artificial intelligence and machine learning within academic literature, Canadian newspapers, and twitter tweets: The case of disabled people. Societies, v. 10, n. 1, p. 23, 2020.

MCBRIDE, Neil. The ethics of driverless cars. Acm Sigcas Computers and Society, v. 45, n. 3, p. 179-184, 2016.

MAZZONE, M.; ELGAMMAL, A. Art, Creativity, and the Potential of Artificial Intelligence in Arts. Artist J Home Cult, 2019.

MITCHELL, Melanie. Artificial intelligence hits the barrier of meaning. Information, v. 10, n. 2, p. 51, 2019.

MÜLLER, Vincent C. Ethics of artificial intelligence and robotics. 2020.

NUGENT, Selin E.; SCOTT-PARKER, Susan. Recruitment AI has a Disability Problem: anticipating and mitigating unfair automated hiring decisions. In: Towards Trustworthy Artificial Intelligent Systems. Cham: Springer International Publishing, 2022. p. 85-96.

OECD Legal. Recommendation of the Council on Artificial Intelligence. OECD Legal Instruments. Acessado em 1 de outubro de 2023. https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449#mainText

PARASURAMAN, Raja; MANZEY, Dietrich H. Complacency and bias in human use of automation: An attentional integration. Human factors, v. 52, n. 3, p. 381-410, 2010.

PATTON, M. Q. (2015). Qualitative research and evaluation methods (4th ed.). Thousand Oaks, CA: Sage.

PINHEIRO, H. L. Diversidade e Deficiência no Novo Milênio. In: Estatuto da Pessoa Portadora de Deficiência: A natureza respeita as diferenças. 3ª ed., Brasília, Senado Federal, p. 33-36, 2003.

POULSEN, Adam; BURMEISTER, Oliver K.; TIEN, David. Care Robot Transparency Isn't Enough for Trust. In: 2018 IEEE Region Ten Symposium (Tensymp). IEEE, 2018. p. 293-297.

RITTEL, Horst WJ; WEBBER, Melvin M. Dilemmas in a general theory of planning. Policy sciences, v. 4, n. 2, p. 155-169, 1973.

SÁNCHEZ-MONEDERO, Javier; DENCIK, Lina; EDWARDS, Lilian. What does it mean to'solve'the problem of discrimination in hiring? Social, technical and legal perspectives from the UK on automated hiring systems. In: Proceedings of the 2020 conference on fairness, accountability, and transparency. 2020. p. 458-468.

SEIFERT, Johanna; FRIEDRICH, Orsolya; SCHLEIDGEN, Sebastian. Imitating the Human. New Human–Machine Interactions in Social Robots. NanoEthics, v. 16, n. 2, p. 181-192, 2022.

SIAU, Keng; WANG, Weiyu. Artificial intelligence (AI) ethics: ethics of AI and ethical AI. Journal of Database Management (JDM), v. 31, n. 2, p. 74-87, 2020.

SOLÉ, Ricard. Bioengineering the biosphere?. Ecological Complexity, v. 22, p. 40-49, 2015.

SCOTT-PARKER, Susan. HR has an AI powered Disability Problem. In: Linkedin. 2023.

TIGARD, Daniel W. Responsible AI and moral responsibility: a common appreciation. AI and Ethics, v. 1, n. 2, p. 113-117, 2021.

TILMES, Nicholas. Disability, fairness, and algorithmic bias in AI recruitment. Ethics and Information Technology, v. 24, n. 2, p. 21, 2022.

VENKIT, Pranav Narayanan; SRINATH, Mukund; WILSON, Shomir. A study of implicit bias in pretrained language models against people with disabilities. In: Proceedings of the 29th International Conference on Computational Linguistics. 2022. p. 1324-1332.

SIAU, Keng; WANG, Weiyu. Artificial intelligence (AI) ethics: ethics of AI and ethical AI. Journal of Database Management (JDM), v. 31, n. 2, p. 74-87, 2020.

VIEIRA, Leonardo Marques. A problemática da inteligência artificial e dos vieses algorítmicos: caso COMPAS. In: Brazilian Technology Symposium. 2019.

SIMÕES-GOMES, Letícia; ROBERTO, Enrico; MENDONÇA, Jônatas. Viés algorítmico–um balanço provisório. Estudos de Sociologia, v. 25, n. 48, 2020.

WOHLIN, Claes et al. Experimentation in software engineering. Springer Science & Business Media, p.102, 2012.

ZARSKY, Tal. The trouble with algorithmic decisions: An analytic road map to examine efficiency and fairness in automated and opaque decision making. Science, Technology, & Human Values, v. 41, n. 1, p. 118-132, 2016.

Publiée

2023-12-29