Quantitative differences in detection of fire pixels using Aqua/MODIS and NPP-Suomi/VIIRS satellites
DOI:
https://doi.org/10.29150/jhrs.v12.6.p379-390Schlagworte:
wildland fire, remote sensing, fire prevention.Abstract
Since 2002, the AQUA (MODIS) satellite has been used as a “reference” by the Brazilian National Institute of Space Research to analyze spatial and temporal trends over fire pixel detection in all South America. Since this satellite will stop providing data in the near future, in order to continue the trend analyzes it will be necessary an integration and adjustment between AQUA fire pixels data with the data from the next reference satellite: the Suomi NPP (VIIRS). Therefore, this study has as objective to analyze the differences in fire pixels detection from AQUA and S-NPP satellites at country, state and municipal level. During the 10 years period assessed, the S-NPP detected, on average, 5.13 times more fire pixels than the AQUA on the South America continent. Venezuela was the country with the highest S-NPP/AQUA ratio (6.81) and Chile the lowest (3.87). When analyzing the fire pixels only in the Brazilian states, Acre presented the lowest S-NPP/AQUA ratio (3,72), while in Sergipe the highest (10,07). In the Pará’s municipalities, the lowest S-NPP/AQUA ratio was in Quatipuru (2.84), while the highest in Ananindeua (11.25). Despite the differences in the ratio, the number of fire pixels detected by the AQUA and S-NPP presented, almost in all cases, a significant correlation. Only the smallest municipalities in Pará had no significant correlation, probably due to low data and/or detection location errors. The changes in the S-NPP/AQUA ratio occurred probably due to factors such as sampling characteristics (pixel enlargement away from nadir), geographic area analyzed, timing of satellite overpasses, predominant type of vegetation, and others. Therefore, there isn’t one unique formula to adjust AQUA data to S-NPP, variations will persist at different locations.
Diferenças quantitativas na detecção de pixels de fogo usando os satélites Aqua/MODIS e NPP-Suomi/VIIRS
RESUMO
Desde 2002, o satélite AQUA (MODIS) tem sido usado como “referência” pelo Instituto Nacional de Pesquisas Espaciais do Brasil para analisar tendências espaciais e temporais na detecção de pixels de fogo em toda a América do Sul. Uma vez que este satélite deixará de fornecer dados em um futuro próximo, para continuar as análises de tendências, será necessária uma integração e ajuste entre os dados de pixels de fogo AQUA com os dados do próximo satélite de referência: o Suomi NPP (VIIRS). Portanto, este estudo tem como objetivo analisar as diferenças na detecção de pixels de incêndio dos satélites AQUA e S-NPP em nível nacional, estadual e municipal. Durante o período de 10 anos avaliado, o S-NPP detectou, em média, 5,13 vezes mais pixels de incêndio do que o AQUA no continente sul-americano. A Venezuela foi o país com a maior relação S-NPP/AQUA (6,81) e o Chile a menor (3,87). Ao analisar os pixels de fogo apenas nos estados brasileiros, o Acre apresentou a menor relação S-NPP/AQUA (3,72), enquanto em Sergipe a maior (10,07). Nos municípios paraenses, a menor relação S-NPP/AQUA foi em Quatipuru (2,84), enquanto a maior em Ananindeua (11,25). Apesar das diferenças na proporção, o número de pixels de incêndio detectados pelo AQUA e S-NPP apresentou, quase em todos os casos, uma correlação significativa. Apenas os menores municípios do Pará não tiveram correlação significativa, provavelmente devido a poucos dados e/ou erros de localização de detecção. As mudanças na relação S-NPP/AQUA ocorreram provavelmente devido a fatores como características da amostragem (alargamento dos pixels a partir do nadir), área geográfica analisada, tempo de passagem dos satélites, tipo de vegetação predominante, entre outros. Portanto, não há uma fórmula única para ajustar os dados AQUA para S-NPP, as variações persistirão em diferentes locais.
Palavras-chave: incêndio florestal; sensoriamento remoto; Prevenção de incêndio.
Literaturhinweise
BADARINATH, K. V. S.; SHARMA, A. R.; KHAROL, S. K. Forest fire monitoring and burnt area mapping using satellite data: a study over the forest region of Kerala State, India. International Journal of Remote Sensing, v. 32, n. 1, p. 85-102, 2011. DOI: https://doi.org/10.1080/01431160903439890
CAO, C.; DELUCCIA, F.; XIONG, X.; WOLFE, R.; WENG, F. Early On-orbit Performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (S-NPP) Satellite. IEEE Transactions on Geoscience and Remote Sensing, v. 52, n. 2, p. 1142-1156, 2013. DOI: https://doi.org/10.1109/TGRS.2013.2247768
CSISZAR, I.; DENIS, L.; GIGLIO, L.; JUSTICE, C. O.; HEWSON, J. Global fire activity from two years of MODIS data. International Journal of Wildland Fire, v. 14, n. 2, p. 117-130, 2005. DOI: https://doi.org/10.1071/WF03078
CSISZAR, I.; MORISETTE, J. T.; GIGLIO, L. Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in Northern Eurasia. IEEE Transactions on Geoscience and Remote Sensing, v. 44, n. 7, p. 1757-1764, 2006. DOI: https://doi.org/10.1109/TGRS.2006.875941
CSISZAR, I.; SCHROEDER, W.; GIGLIO, L.; ELLICOTT, E.; VADREVU, K. P.; JUSTICE, C. O.; WIND, B. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. Journal of Geophysical Research: Atmospheres, v. 119, n. 2, p. 803–816, 2014. DOI: https://doi.org/10.1002/2013JD020453
FU, Y.; LI, R.; WANG, X.; BERGERON, Y.; VALERIA, O.; CHAVARDÈS, R. D.; WANG, Y.; HU, J. Fire detection and fire radiative power in forests and low-biomass lands in Northeast Asia: MODIS versus VIIRS fire products. Remote Sensing, v. 12, n. 18, p. 2870, 2020. DOI: https://doi.org/10.3390/rs12182870
GIGLIO, L.; CSISZAR, I.; JUSTICE, C. O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Journal of geophysical research: Biogeosciences, v. 111, n. G2, 2006. DOI: https://doi.org/10.1029/2005JG000142
GIGLIO, L.; SCHROEDER, W.; HALL, J. V.; JUSTICE, C. O. Modis collection 6 active fire product user’s guide: Revision B. Department of Geographical Sciences. University of Maryland, 9, 2018. Available at: https://www.earthdata.nasa.gov/s3fs-public/imported/MODIS_C6_Fire_User_Guide_B.pdf Accessed on November 2, 2022.
HAWBAKER, T. J.; RADELOFF, V. C.; SYPHARD, A. D.; ZHU, Z.; STEWART, S. I. Detection rates of the MODIS active fire product in the United States. Remote Sensing of Environment, v. 112, n. 5, p. 2656-2664, 2008. DOI: https://doi.org/10.1016/j.rse.2007.12.008
INPE - Instituto Nacional de Pesquisas Espaciais. Portal do Monitoramento de Queimadas e Incêndios. 2022. Available at: http://www.inpe.br/queimadas Accessed on 02 Jan. 2022.
LI, F.; ZHANG, X.; KONDRAGUNTA, S.; CSISZAR, I. Comparison of fire radiative power estimates from VIIRS and MODIS observations. Journal of Geophysical Research: Atmospheres, v. 123, n. 9, p. 4545-4563, 2018. DOI: https://doi.org/10.1029/2017JD027823
NASA - National Aeronautics and Space Administration. VNP14IMG - VIIRS/NPP Active Fires 6-Min L2 Swath 375m. 2022. Available at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP14IMG Accessed on May 5, 2022.
SCHROEDER, W.; GIGLIO, L. NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products. Product User’s Guide Version 1.4. University of Maryland: NASA, 2017. Available at: https://lpdaac.usgs.gov/documents/132/VNP14_User_Guide_v1.3.pdf Accessed on July 23 2022.
SHARMA, A.; WANG, J.; LENNARTSON, E.M. Intercomparison of MODIS and VIIRS fire products in Khanty-Mansiysk Russia: Implications for characterizing gas flaring from space. Atmosphere, v. 8, n. 6, p. 1-19, 2017. DOI: https://doi.org/10.3390/atmos8060095
VADREVU, K.; LASKO, K. Intercomparison of MODIS AQUA and VIIRS I-Band fires and emissions in an agricultural landscape—Implications for air pollution research. Remote Sensing, v. 10, n. 7, 978, 2018. DOI: https://doi.org/10.3390/rs10070978
XIA, X.; ZONG, X.; SUN, L. Exceptionally active agricultural fire season in mid‐eastern China in June 2012 and its impact on the atmospheric environment. Journal of Geophysical Research: Atmospheres, v. 118, n. 17, p. 9889-9900, 2013. DOI: https://doi.org/10.1002/jgrd.50770
WAIGL, C. F., STUEFER, M., PRAKASH, A., & ICHOKU, C. Detecting high and low-intensity fires in Alaska using VIIRS I-band data: An improved operational approach for high latitudes. Remote Sensing of Environment, v. 199, n. 2017, p. 389-400, 2017. DOI: https://doi.org/10.1016/j.rse.2017.07.003
WHITE, B. L. A. Satellite detection of wildland fires in South America. Floresta, v. 49, n. 4, p. 851-858, 2019. DOI: http://dx.doi.org/10.5380/rf.v49i4.60117
WHITE, B. L. A. Spatiotemporal variation of fire occurrence in the State of Bahia, Brazil, between 2003 and 2019. Journal of Hyperspectral Remote Sensing, v. 10, n. 3, p. 153-167, 2020. DOI: https://doi.org/10.29150/jhrs.v10.3.p153-167
WHITE, B. L. A.; WHITE, L. A. S. Queimadas e incêndios florestais no estado de Sergipe, Brasil, entre 1999 e 2015. Floresta, v. 46, n. 4, p. 561-570, 2017. DOI: http://dx.doi.org/10.5380/rf.v46i4.47036
WICKRAMASINGHE, C.; WALLACE, L.; REINKE, K.; JONES, S. Intercomparison of Himawari-8 AHI-FSA with MODIS and VIIRS active fire products. International Journal of Digital Earth, v. 13, n. 4, p. 457-473, 2020. DOI: http://dx.doi.org/10.1080/17538947.2018.1527402
