Dinâmica de Carbono Orgânico Dissolvido em Ecossistemas Florestais: Uma Revisão Sobre a Lixiviação pela Chuva (Dissolved Organic Carbon Dynamics in Forest Ecosystems Through Rainfall Mediated Leaching: A Review )

Felipe Soter Mariz Miranda, André de Souza Avelar

Resumo


O fluxo de matéria orgânica é um componente importante da dinâmica de ecossistemas e dos impactos ambientais. A água da chuva, ao percolar os ambientes terrestres, transporta partículas orgânicas das quais as menores têm maior mobilidade espacial e são mais ativas do ponto de vista ecológico, sendo chamadas de dissolvidas quando menores que 0,45 µm na maioria dos estudos recentes. A dinâmica de carbono orgânico dissolvido (COD) inclui entradas atmosféricas de moléculas alóctones, tanto pela deposição úmida vinculada à chegada direta via chuva e que pode ser observada pela concentração de COD na precipitação inicial, quanto pela deposição seca originada pela lavagem da biomassa viva onde se acumulam poeiras orgânicas de origem atmosférica, a qual pode ser observada na precipitação atravessada. Nesta segunda, também há a presença de COD originado por exsudatos solúveis secretados pela própria vegetação. Nas deposições úmida e seca, é mais relevante a condição atmosférica vinculada à influência de atividades industriais e centros urbanos, do que a produtividade dos ecossistemas em si. Ao percolar e lixiviar os estoques de serrapilheira a água da chuva atinge as maiores concentrações de COD, onde a dinâmica de produtividade e decomposição de cada ecossistema torna-se preponderante. Quando infiltra o horizonte mineral do solo o COD pode adsorver-se às partículas minerais, reduzindo sua concentração na solução do solo gradativamente com o aumento da profundidade. Quando ocorrem escoamentos superficiais, ficam reduzidas as oportunidades de adsorção do COD ao solo, resultando em aumento das transferências dos ecossistemas terrestres para os aquáticos.

 

 

A B S T R A C T

The flows of organic matter are an important part of the ecosystem dynamics and environmental impacts. Rainwater, when percolating through terrestrial environments, transports organic particles, of which the smallest ones have greater spatial mobility and are more ecologically active. These particles are considered dissolved when smaller than 0.45 μm in most recent studies. The dynamics of dissolved organic carbon (DOC) involves the atmospheric input of allochthonous molecules, due to the wet deposition associated with rainfall, which can be observed in the DOC concentration in the initial precipitation, as well as by the dry deposition caused by the washing of living biomass where organic dust of atmospheric origin accumulates, which can be observed in the throughfall fluxes. In the later, there is also the presence of DOC originated by soluble exudates secreted by the vegetation itself. About wet and dry depositions, the atmospheric condition associated with the influence of industrial activities and urban centers is more relevant than the productivity of the ecosystems themselves. When percolating and leaching the litter stocks, rainwater reaches the highest concentrations of DOC, where the dynamics of productivity and decomposition of each ecosystem becomes preponderant. When it infiltrates the soil mineral horizon the DOC can adsorb to the mineral particles, reducing its concentration in the soil solution gradually as the depth increases. With the occurrence of surface runoff, opportunities for adsorption of DOC to the soil are reduced, resulting in increased transfer from terrestrial to aquatic ecosystems.

Key-words: Dissolved organic carbon; forest leaching; geoecology


Palavras-chave


Carbono prgânico dissolvido; Geoecologia

Texto completo:

PDF

Referências


Abdolalahi, L., Schjønning, P., Elmholt, S., Munkholm, L.J., 2014. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability. Soil & Tillage Research 136, 28-37. Disponível: https://doi.org/10.1016/j.still.2013.09.011

Aitkenhead, J.A., Mcdowell, W.H., 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles 14, 127-138. Disponível: https://doi.org/10.1029/1999GB900083

Amado, T.J.C., Bayer, Celtz, F.L.F., Brum, A.C.R., 2001. Potencial de culturas de cobertura em acumular carbono e nitrogênio no solo no plantio direto e a melhoria da qualidade ambiental. Revista Brasileira de Ciências do Solo 25, 189-197. Disponível: http://dx.doi.org/10.1590/S0100-06832001000100020.

Bäumler, R., Zech, W., 1997. Atmospheric deposition and impact of forest thinning on the throughfall of mountain forest ecosystems in the Bavarian Alps. Forest Ecology and Management 95, 243-251. Disponível: https://doi.org/10.1016/S0378-1127(97)00039-X

Bäumler. R., W. Zech (1998) Soil solution chemistry and impact of forest thinning in mountain forests in the Bavarian Alps. Forest Ecology and Management 108, 231-238. Disponível: https://doi.org/10.1016/S0378-1127(98)00238-2

Camino-Serrano1, M., Gielen, B., Luyssaert, S., Ciais, P., Sara Vicca, S., Guenet, B., Vos, B., Cools, N., Ahrens, B., Arain, M.A., Werner Borken, M., Clarke, N., Clarkson, B., Cummins, T., Don, A., Pannatier, E.G., Laudon, H., Moore, T., Nieminen, T.M., Nilsson, M.B., Matthias Peichl, M., Schwendenmann, L., Siemens, J., Janssens, I., 2014. Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. Global Biogeochemical Cycles 28, 497-509. Disponível: https://doi.org/10.1002/2013GB004726

Canellas, L.P.E., Santos, G.A., 2005. Humosfera: tratado preliminar sobre a química das substâncias húmicas, ed. UENF, Campos dos Goytacazes.

Chaplot, V., Ribolzi, O., 2014. Hydrograph separation to improve understanding of Dissolved Organic Carbon Dynamics in Headwater catchments. Hydrological Process 28, 5354-5366. Disponível: https://doi.org/10.1002/hyp.10010

Coelho Netto, A.L. 1987. Overlandflow production in a tropical rainforest catchment: the role of litter cover. Catena 14, 213-231.

Coelho Netto, A.L., 2007. Hidrologia de encosta na interface com a geomorfologia. In: Guerra, A.J.T. e Cunha, S. B. (org) Geomorfologia uma atualização de bases e conceitos. 7ª ed., Rio de Janeiro, Bertrand do Brasil, pp. 93-148.

Coelho, C.H., Francisco, J.G., Nogueira, R.F.P., Campos, M.L.A.M.., 2008. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning. Atmosferic Environment 42, 7115–7121. Disponível: https://doi.org/10.1016/j.atmosenv.2008.05.072

Costa, E.N.D., Souza, J.C., Pereira, M.A., Souza, M.F. L., Souza, W.F.L., Silva, D.M.L., 2016. Influence of hydrological pathways on dissolved organic carbon fluxes in tropical streams. Ecology and Evolution 7, 228-239. Disponível: https://doi.org/10.1002/ece3.2543

Cornell, S., Rendell, A., Jickells, T., 1995. Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376, 243-246. Disponível: https://doi.org:10.1038/376243a0

Creed, I.F., Sanford, S.E., Beall, F.D., Molot, L.A., Dillon, P.J., 2003. Cryptic wetlands: integrating hidden wetlands in regression models of the export of dissolved organic carbon from forested landscapes. Hydrological Processes 17, 3629-3648. Disponível: https://doi.org/10.1002/hyp.1357

Cronan, C.S., Aiken R.G., 1985. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochimestry and Cosmochimestry Acta 49, 1697–1705. Disponível: https://doi.org/10.1016/0016-7037(85)90140-1

Currie, W.S. Aber, J.D., Mcdowell, W.H., Boone, R.D., Magill, A.H., 1996. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemstry 80, 1-35. Disponível: https://doi.org/10.1007/BF02183037

Dawson, J.J.C.,, Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S.M., Malcolm, I.A., 2008. Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments. Biogeochemistry 90, 93-113.

Dalva, M; Moore, T.R., 1991. Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry 15, 1-19. Disponível: https://doi.org/10.1007/BF00002806

David, M., B., Driscoll, C. T., 1984. Aluminum speciation and equilibria in soil solutions of a Haplorthod in the Adirondack Mountains (New York, U.S.A.). Geoderma 33, 297-318. Disponível: https://doi.org/10.1016/0016-7061(84)90031-4

Duan, S., Delaney-Newcomb, K., Kaushal, S. S., 2014. Potential effects of leaf litter on water quality in urban Watersheds. Biogeochemistry 121, 61–80. Disponível: https://doi.org/10.1007/s10533-014-0016-9

Edmonds, R. L., Thomas, T. B., Blew, R. D., 1995. Biogeochemistry of an old-growth forested watershed, Olympic National Park, Washington. Water Resources Research 31, 409-419. Disponível: https://doi.org/10.1111/j.1752-1688.1995.tb04029.x

Figueiredo, J. A., Menor, E. A., Taboada-Castro, M. T., Taboada-Castro, M. M., Rodríguez-Blanco, M. L., Braga, E. S., 2014. Using hydrogeochemical signatures of stream water to assess pathways for rainfall events: toward a predictive model. Hydrological Process 28, 2301-2311. Disponível: https://doi.org/10.1002/hyp.9801

Céspedes, F.F., Pradas, G.E., Pérez , M.F., Sánchez, M.V., Viciana, M.S., Amate, M.D.U., 2002. Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil. J. Environ. Qual. 31, 880-888. Disponível: https://doi.org/10.2134/jeq2002.8890

Fröberg, M., Berggren, D., Bergkvist, B., Bryant, C., Mulder, J., 2006. Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden. Biogeochemistry 77, 1-23. Disponível: https://doi.org/10.1007/s10533-004-0564-5

Fröberg, M., Hansson, K., Kleja, D.B., & Alavi, G., 2011. Dissolved organic carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch stands in southern Sweden. Forest ecology and management 262, 1742-1747. Disponível: https://doi.org/10.1016/j.foreco.2011.07.033

Ganter, C., 2007. Stabilization of soil organic matter by mineral surfaces. Dissertação de Mestrado em Ciências Ambientais, Instituto Federal de Tecnologia de Zurique.

Golley, F.B., 1978. Ciclagem de nutrientes em um ecossistema de floresta tropical úmida. São Paulo: EDUSP.

Gouveia Neto, S.C., Concentrações e balanços de Carbono Orgânico Dissolvido em duas bacias do estado de Rondônia: uma comparação entre floresta e pastagem. Dissertação (Mestrado) Piracicaba, São Paulo. USP.

Guerra, A.J.T., 1990. O papel da matéria orgânica e dos agregados na erodibilidade dos solos. Anuário do Instituto de Geociências 13, 43-52.

Guerra, A.J.T., Processos erosivos em encostas. In: GUERRA, A.J.T. & CUNHA, S.B. (org) Geomorfologia uma atualização de bases e conceitos. 7ª ed., Rio de Janeiro, Bertrand do Brasil, pp. 93-148.

Guggenberger, G., Zech, W., 1993. Dissolved organic carbon control in acid forest soils of the Fichtelgebirge (Germany) as revealed by distribution patterns and structural composition analyses. Geoderma 59, 109-129. Disponível: https://doi.org/10.1016/0016-7061(93)90065-S

Hafner, S.D., Groffman, P.M., Mitchell, M.J., 2005. Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry 74, 257-282. Disponível: http://www.jstor.org/stable/20055238

Hinton, M.J., Schiff, S. L., English, M.C., 1998. Sources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian Shield. Biogeochemistry 41, 175-197. Disponível: https://doi.org/10.1023/A:1005903428956

Hongve, D., 1999. Production of dissolved organic carbon in forested catchments. Journal of Hydrology 224 91-99. https://doi.org/10.1016/S0022-1694(99)00132-8

Jiang, R., Hatano, R., Zhao, Y., Kuramochi, K., Hayakawa, A., Woli, K. P., Shimizu, M., 2014. Factors controlling nitrogen and dissolved organic carbon exports across timescales in two watersheds with different land uses. Hydrological Process 28, 5105-5121. Disponível: https://doi.org/10.1002/hyp.9996

Jones, D,L., John R. Healey, J.R., Willett, V.B., John F. Farrar J.F., Angela Hodge, A., 2005. Dissolved organic nitrogen uptake by plants an important N uptake pathway? Soil Biology & Biochemistry 37, 413–423. Disponível: https://doi.org/10.1016/j.soilbio.2004.08.008

Kaiser, K., Guggenberger, G., Zech, W., 1996. Sorpion of DOM and DOM fractions to forest soils. Geoderma 74, 281-303. Disponível: https://doi.org/10.1016/S0016-7061(96)00071-7

Kaiser, K., Kaupenjohann, M., Zech, W., 2001. Sorption of dissolved organic carbon in soils: effect of soil sample storage, soil-to-solution ratio, and temperature. Geoderma 99, 317-328. Disponível: https://doi.org/10.1016/S0016-7061(00)00077-X

Kaiser, K. E Guggenberger, G., 2007. Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation. European Journal of Soil Science 58(1): 45-59. 2007. https://doi.org/10.1111/j.1365-2389.2006.00799.x

Kieber R. J., Peake B., Willey J. D., Brooks A. G., 2002. Dissolved organic carbon and organic acids in coastal New Zealand rainwater. Atmos Environment, 36. 3557–3563. https://doi.org/10.1016/S1352-2310(02)00273-X

Kindler, R., Siemens, J., Kaiser, K., Walmsley, D.C., Bernhofer, C., Buchmann, N., Cellier, P., Eugster, W., Gleixner, G., Grunwald, T., Heim, A., Ibrom, A., Jones, S.K., Jones, J. Klumpp, K., Kutsch, W., Steenberg, K., Larsen, Lehuger, S., Loubet. B., Mckenzie, R., Moors, E., Osborne, B., Pilegaard, K., Rebmann, C., Saunders, M., Schmidt, M.W.I., Schrumpf, M., Seyfferth, J., Skiba, U., Soussana, J.F., Sutton, M.A., Ctefs, C., Vowinckel, B., Zeeman, J.M., Kaupenjohann, M., 2010. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biology 17, 1167–1185. Disponível: https://doi.org/10.1111/j.1365-2486.2010.02282.x

Krám, P., Hrusˇka, J., Wenner, B.S., Driscoll, C.T., Johnson, C.E., 1997. The biogeochemistry of basic cations in two forest catchments with contrasting lithology in the Czech Republic. Biogeochemistry 37, 173–202. Disponível: https://link.springer.com/article/10.1023/A:1005742418304

Lee, M.H., Park, J.H., Matzner, E., 2018. Sustained production of dissolved organic carbon and nitrogen in forest floors during continuous leaching. Geoderma 310, 163-169. Disponível: https://doi.org/10.1016/j.geoderma.2017.07.027

Leinemanna, T., Preusserb, S., Mikuttac, R., Kalbitzd, K., Cerlie, C., Höschenf, C., Muellerf, C.W., Kandelerb, E., Guggenbergera, G., 2018. Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles. Soil Biology and Biochemistry 118, 79–90. Disponível: https://doi.org/10.1016/j.soilbio.2017.12.006

Liu, C.P., Sheu, B.H., 2003. Dissolved organic carbon in precipitation, throughfall, stemflow, soil solution, and stream water at the Guandaushi subtropical forest in Taiwan. Forest Ecology and Management 173, 315-325. Disponível: https://doi.org/10.1016/S0378-1127(01)00793-9

Magill, A.H., Aber, J.D., 2000. Variation in soil net mineralization rates with dissolved organic carbon additions. Soil biology and biochemistry 32, 597-601. Disponível: https://doi.org/10.1016/S0038-0717(99)00186-8

Marques, J.D.O., Luizão, J.L., Teixeira, W.G., Sávio José Filgueiras Ferreira, S.J.F., 2012. Variações do Carbono Orgânico Dissolvido e de Atributos Físicos do Solo Sob Diferentes Sistemas de Uso da Terra na Amazônia Central. Revista Brasileira de Ciência do Solo 36, 611-622. Disponível: http://dx.doi.org/10.1590/S0100-06832012000200030

Marques, J.S.J., Dittmar, T., Niggemann, J., Almeida, M.G., Gomez-Saez, G.V., Rezende, C.E., Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba Do Sul River, Brazil. Frontiers in Earth Science 5, 1-12. Disponível: https://doi.org/10.3389/feart.2017.00011

Mayorga, E., Aufdenkampe, A. K., 2002. Processing of bioactive elements in the Amazon River system, in: McClain, M.E. (Ed.), The Ecohydrology of South American Rivers and Wetlands, pp. 1–24.

McClain, M.E., Richey, J.E., Branes, J.A., 1997. Dissolved organic matter and terrestrial‐lotic linkages in the Central Amazon Basin of Brazil. Global Biogeochemical Cycles 11, 295-311. Disponível: https://doi.org/10.1029/97GB01056

McDowell, W.H., 1998. Internal nutrient fluxes in a Puerto Rican rain forest. Journal of Tropical Ecology 14, 521-536.

Mcdowell, W.H., Likens, G.E., 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecological monographs, 177-195. Diponível: https://doi.org/10.2307/2937024

Mengistu, S.G., Creed, I.F., Webster, K.L., Enanga, E., Beall, F.D., 2014. Searching for similarity in topographic controls on carbon, nitrogen and phosphorus export from forested headwater catchments. Hydrological Processes 28, 3201-3216. Disponível: https://doi.org/10.1002/hyp.9862

Meyer, J.L., Mcdowell, W.H., Bott, T.L., Elwood, J.W., Ishizaki, C., Melack, J.M., Peckarsky, B.L., Peterson, B.J., Rublee, P.A., 1988. Elemental dynamics in streams. Journal of the North American Benthological Society, Washington 7, 410-432. Disponível: http://www.jstor.org/stable/1467299

Michalzik, B., Kalbitz, K., J.H. Park, Solinger, S., Matzner, E., 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52, 173–205.. Disponível: http://www.jstor.org/stable/1469450

Miranda, F.S.M., 2013. Dinâmica da serapilheira em encosta florestada do PARNA-Tijuca: a posição na encosta e declividade como fatores condicionante à formação dos estoques. Dissertação (Mestrado). Rio de Janeiro, UFRJ.

Miranda, F.S.M., 2017. Interações água-biomassa-solo associadas à migração e retenção de carbono orgânico dissolvido no Maciço da Tijuca (RJ). Tese (Doutorado). Rio de Janeiro, UFRJ.

Moore, T.R., Jackon, R.J. Dynamics or dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand. Water Resources Research 25, 1331-1339, 1989. Disponível: https://doi.org/10.1029/WR025i006p01321

Mulholland, P.J., Wilson, G.V., Jardine, P.M. Hydrogeochemical response of a forested watershed to storms - Effects of preferential flow along shallow and deep pathways. Water Resources Research 26, 3021-3036, 1990. Disponível: https://doi.org/10.1029/WR026i012p03021

Musolff A., Selle B., Buttner O., Opitz, M., Knorr, K.H., K.H., Fleckenstein, J.H., Reemtsma, T., Tittel, J., 2017. Response to the editor: Does iron reduction control the release of dissolved organic carbon and phosphate at catchment scales? Need for a joint research effort. Global Change Biology 23. Disponível: https://doi.org/10.1111/gcb.13758

Neu, V., 2005. Influência da cobertura vegetal na ciclagem de nutrientes via solução do solo na região de Manaus. Dissertação (Mestrado). Piracicaba, ESALQ.

Nosrati, K., Govers, G., Smolders, E., 2012. Dissolved organic carbon concentrations and fluxes correlate with land use and catchment characteristics in a semi-arid drainage basin of Iran. Catena, 95, 177-183. Disponível: https://doi.org/10.1016/j.catena.2012.02.019

Oliveira, R.R., Lacerda, L.D., 1987. Contaminação por chumbo na serrapilheira do Parque Nacional da Tijuca-RJ. Acta bot. bras. 1, 165-169. Disponível: http://dx.doi.org/10.1590/S0102-33061987000300016.

Oni, S.K., Futter, M.N., Molot, L.A., Dillon, P.J., 2014. Adjacents catchments with similar patterns of land use and climate have markedly different dissolved organis carbon concentration and runoff dynamics. Hydrological Process 28, 1436-1449. Disponível: https://doi.org/10.1002/hyp.9681

Pan, Y., Wang, Y., Xin, J., Tang, G., Song, T., Wang, Y., Li, X., Wu, F., 2010. Study on dissolved organic carbon in precipitation in Northern China. Atmospheric Environment 44, 2350-2357. Disponível: https://doi.org/10.1016/j.atmosenv.2010.03.033

Panhota, R.S., 2007. Utilização e destino do carbono orgânico dissolvido em um reservatório eutotrófico (Barra Bonita, SP). Tese (Doutorado). São Carlos, UFSCar.

PARK, J., MATZNER, E., 2003. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 66, 265-286. Disponível: https://doi.org/10.1023/B:BIOG.0000005341.19412.7b

Peralta-Tapia, A., Sponseller, R.A., Tetzlaff, D., Soulsby, C., Laudon, H., 2014. Connecting precipitation inputs and soil flow pathways to stream water in contrasting boreal catchments. Hydrological Process 29, 3546-3555. Disponível: https://doi.org/10.1002/hyp.10300

Qualls, R.G., Haines, B.L., Swank, W.T., 1991. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72, 254–266. Disponível: http://www.jstor.org/stable/1938919

Qualls, R.G., Haines, B.L., 1992. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water, Soil Science Society of America Journal 56, 578-586. Disponível: https://dx.doi.org/10.2136/sssaj1992.03615995005600020038x

Richter, D.D., Markewitz, D., 1996. Carbon changes during the growth of loblolly pine on formerly cultivated soil. The Calhoun Experimental Forest, U.S.A. Advanced Science Institutes Series, 138, 397-407. Disponível: https://doi.org/10.1007/978-3-642-61094-3_38

Scheer, M.B., 2009. Fluxo de nutrientes pela precipitação pluviométrica em dois trechos de floresta ombrófila densa em Guaraqueçaba, Paraná. Floresta 39, 117-130. Disponível: http://dx.doi.org/10.5380/rf.v39i1.13732

Scheibe, A., Gleixner, G., 2014. Influence of Litter Diversity on Dissolved Organic Matter Release and Soil Carbon Formation in a Mixed Beech Forest. Plos One 9, 1-21. DOI: 10.1371/journal.pone.0114040.

Schmidt, B.H.M., Wang, C., Chang, S, Matzner, E., 2010. High precipitation causes large fluxes of dissolved organic carbon and nitrogen in a subtropical montane Chamaecyparis forest in Taiwan. Biogeochemistry 101, 243-256. Disponível: https://doi.org/10.1007/s10533-010-9470-1

Schrumpf, M., Zach, W., Axmacher, J.C., Lyaruu, H.V.M., 2006. Biogeochemistry of na afrotropical montane rain forest on Mt. Kilimanjaro, Tanzania. Journal of Tropical Ecology 22, 77-89. Disponível: https://doi.org/10.1017/S0266467405002907

Silva, D.M.L., Ometto, J.P.H.B., Lobo, G.A., Lima, W.P., Scaranello, M.A., Eazzi, E., Rocha H.R., 2007. Can land use changes alter carbon, nitrogen and major ion transport in subtropical brazilian streams? Sci. Agric. (Piracicaba, Braz.) 64, 317-324. Disponível: http://dx.doi.org/10.1590/S0103-90162007000400002

Singh, S., Inamdar, S., Mitchell, M., 2014. Changes in dissolved organic matter (DOM) amount and composition along nested headwater stream locations during baseflow and stormflow. Hydrological Process 29, 1505-1520. Disponível: https://doi.org/10.1002/hyp.10286

Singh, M., Sarkar, B., Hussain, S., Ok, Y.S., Nanthi S. Bolan, N.S., Churchman, G.J., 2017. Influence of physico-chemical properties of soil clay fractions on the retention of dissolved organic carbon. Environmental Geochemistry and Health 39, 1335–1350. Disponível: https://doi.org/10.1007/s10653-017-0045-0

Siudek, P., Frankowski, M., Siepak, J., 2015. Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland. Environment Science Pollution Research 22 11087-11096. Disponível: https://doi.org/10.1007/s11356-015-4356-3

Six, J., Ogle, S.M., Jaybreidt, F., Conant, C., Mosier, A., Paustian, K., 2004. The potential to mitigate global warming with no-tillagemanagement is only realized when practised in thelong term. Global Change Biology 10, 155–160. Disponível: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1529-8817.2003.00730.x

Smolander, A., Kitunen, V., Mälkönen, E., 2001. Dissolved soil organic nitrogen and carbon in a Norway spruce stand and an adjacent clear-cut. Biology and Fertility of Soils 33, 190-196. Disponível: https://doi.org/10.1007/s003740000307

Swift, M. J., Heal, O.W. & Andeson, J. M., 1979. Decomposition in Terrestrial Ecossystems. University of California Press, Berkley, Los Angeles.

Tietjen, T., Vähätalo, A.V., Wetzel, R.G., 2005. Effects of clay mineral turbidity on dissolved organic carbon and bacterial production. Aquatic sciences 67, 51-60. Disponível: https://doi.org/10.1007/s00027-004-0753-2

Turgeon, J.M.L., Courchesne, F., 2008. Hydrochemical behaviour of issolved nitrogen and carbon in a headwater stream of the Canadian Shield: relevance of antecedent soil moisture conditions. Hydrological Process 22, 327-339. Disponível: https://doi.org/10.1002/hyp.6613

Ussiri, D. A. N., and C. E. Johnson (2004), Sorption of organic carbon fractions by Spodosol mineral horizons, Soil Science Society of America Journal 68, 253–262. Disponível: http://doi.org/10.2136/sssaj2004.2530

Zambrosi, F.C.B., Alleoni, L.R.F., Caires, E.F., 2008. Liming and ionic speciation of an Oxisol under no-till system. Sci. agric. (Piracicaba, Braz.) 65, 190-203. Disponível: http://dx.doi.org/10.1590/S0103-90162008000200013




DOI: https://doi.org/10.26848/rbgf.v11.07.p2351-2374

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License