Efeito das Atividades Antrópicas na Geoquímica do Solo em Topossequências do Planalto do Rio Grande do Sul, Brasil (Effect of Anthropic Activities on Soil Geochemistry in Toposequences of the Rio Grande do Sul Plateau, Brazil )

Viviane Capoane, Robert Alan Burrow, Tales Ticher, Danilo Rheinheimer dos Santos, Mohzin Zafar

Resumo


A gestão agrícola e ambiental eficaz depende da compreensão da variação do conteúdo total dos elementos químicos no solo. Neste trabalho (i) foram determinados os teores totais de elementos químicos em solos de duas topossequências localizadas no planalto do Rio Grande do Sul e (ii) foi avaliada a influência dos usos antrópicos e relevo na geoquímica do solo. As amostras foram coletadas em nove pontos de amostragem e em cinco camadas de solo, num total de 45 amostras. A concentração elementar (flúor a urânio) foi determinada utilizando um espectrômetro de fluorescência de raios-X por dispersão de comprimento de onda, em pastilhas de solo previamente peneiradas em malha de 53 µm e prensadas. Foram estabelecidas as concentrações basais de 35 elementos químicos para os solos do planalto do Rio Grande do Sul, cujo material de origem são arenitos da formação Tupanciretã. O teor total de elementos químicos variou com a posição na encosta (ambiente de perda e deposição de material); com a intensidade da influência antrópica (adição de fertilizante, manejo do solo e drenagem da área úmida) e; com a condição hidromórfica do solo ao longo das topossequências.

 

 

A B S T R A C T

Efficient agricultural and environmental management depends upon the good understanding of the variation in the total contents in soil chemical elements. In this study (i) determine the total contents of chemical elements in soils of two toposequence located in the Rio Grande do Sul plateau and, (ii) the influence of anthropic uses and relief in soil geochemistry. Soil samples were collected at nine sampling points and five soil layers for a total of 45 samples. The elemental concentrations (fluorine to uranium) was determined using a wavelength dispersive X-ray fluorescence spectrometer with pressed soil pellets, pre-sieved in 53 μm and pressed. The basal concentrations of 35 chemical elements were established for the soils of the Rio Grande do Sul plateau, whose material of origin are fluvial sandstones of the Tupanciretã Formation. The chemical element levels varied according to the position in the slope (environment of loss and deposition of material); the intensity of the anthropic influence (addition of fertilizer, soil management and drainage of the wet area); and the hydromorphic condition of the soil along the topossequences.

Keywords: X-ray Fluorescence, Contamination, Wetlands.


Palavras-chave


Fluorescência de Raios-X, Contaminação, Zona Úmida.

Texto completo:

PDF

Referências


Adriano, D.C. 2003. Trace elements in terres-trial environments: Biogeochemistry, Bioa-vailability and Risks of Metals. Springer, New York, NY, USA, 2nd ed.

AENV. Alberta Environment. 2009. Alberta Tier 1 Soil and Groundwater Remediation Guidelines.

Aldous, A., Mccormick, P., Ferguson, C., Gra-ham, S., Craft, C. 2005. Hydrologic regime Controls soil phosphorus fluxes in restora-tion and undisturbed wetlands. Restoration Ecology, [online] 13. Disponível: https://doi.org/10.1111/j.1526-100X.2005.00043.x. Acesso: 23 jul. 2018.

Allen H. E., Fu, G., Deng, B. 1993. Analysis of Acid Volatile Sulfi de (AVS) and simultane-ously extracted metals (SEM) for the estima-tion of potential toxicity in aquatic sedi-ments. Environmental Toxicology and Chemistry [online] 12. Disponível: https://doi.org/10.1002/etc.5620120812. Acesso: 23 jul. 2018.

Armentano, T. 1980. Drainage of organic soils as a factor in the world carbon cycle. Bio-science, [online] 30. Disponível: https://doi.org/10.2307/1308375. Acesso: 23 jul. 2018.

Ayers, J.C, Zhang, L., Luo, L., Peters, T.J. 2012. Zircon solubility in alkaline aqueous fluids at upper crustal conditions. Geochi-mica et Cosmochimica Acta [online] 96. Disponível: https://doi.org/10.1016/j.gca.2012.08.027. Acesso: 23 jun. 2018.

Bednářová, Z., Kalina, J., Hájek, O., Sáňka, M., Komprdová, K. 2016. Spatial distribu-tion and risk assessment of metals in agri-cultural soils. Geoderma, [online] 284. Dis-ponível: https://doi.org/10.1016/j.geoderma.2016.08.021. Acesso: 23 jul. 2018.

Brasil. 2006. Lei nº 11.428, de 22 de dezembro de 2006.

Brinson, M. M., Lugo, A.E., Brown, S. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecological Systems [online] 2. Disponível: https://doi.org/10.1146/annurev.es.12.110181.001011. Acesso: 23 jul. 2018.

Brookins, D.G. 1988. Eh-pH diagrams for geo-chemistry, Springer-Verlag New York.

Bullock, A., Acreman, M. 2003. The Role of Wetlands in the Hydrological Cycle. Hy-drology and Earth System Science 7, 358–389.

Capoane, V. Tiecher, T. Santos, D.R. 2017. Variação de atributos do solo ao longo de três topossequências no planalto do Rio Grande do Sul. Revista Brasileira de Geo-grafia Física [online] 10. Disponível: https://doi.org/10.26848/rbgf.v10.5.p1435-1454. Acesso: 23 fev. 2018.

Capoane, V., Krolow, I.R.C., Santos, D.R., Santos, L.C., Troian, A. 2016a. Distribuição espacial do fósforo disponível do solo em uma bacia hidrográfica agrícola e sua rela-ção com os fatores ambientais uso da terra e declividade. Revista Brasileira de Geomor-fologia [online] 17. Disponível: http://dx.doi.org/10.20502/rbg.v17i4.976. Acesso: 23 fev. 2018.

Capoane, V., Santos, D.R., Kuplich, T.M. 2016b. Efeito do uso da terra e relevo na distribuição espacial e vertical de carbono do solo em uma bacia hidrográfica agrícola. Revista Brasileira de Geografia Física [onli-ne] 9. Disponível: http://dx.doi.org/10.5935/1984-2295.20160112. Acesso: 23 jul. 2018.

Capoane, V., Krolow, I.R.C., Santos, D.R., Santos, L.J.C., Troian, A. 2016c. Distribui-ção espacial do fósforo disponível do solo em uma bacia hidrográfica agrícola e sua re-lação com os fatores ambientais uso da terra e declividade. Revista Brasileira de Geo-morfologia [online] 17. Disponível: http://dx.doi.org/10.20502/rbg.v17i4.976. Acesso: 26 jun. 2018.

Capoane, V., Rheinheimer, D.S. 2012. Análise qualitativa do uso e ocupação da terra no assentamento Alvorada, Júlio de Castilhos – Rio Grande do Sul. Revista NERA, 15, 193–205.

Conceição, O.A. 1984. A expansão da soja no Rio Grande do Sul - 1950-75. Dissertação (Mestrado em Economia Rural). Porto Ale-gre, RS. Departamento de Geografia, PPGGEO-UFRGS.

Covelli. S., Faganeli, J., Horvat, M., Brambati, A. 2001. Mercury contamination of coastal sediments as the result of long-term innabar mining activity (Gulf of Trieste, northern Adriatic Sea). Applied Geochemistry [online] 16. Disponível: https://doi.org/10.1016/S0883-2927(00)00042-1. Acesso: 23 jan. 2018.

Crecelius, E.J., Trefry, J., Mckinley, B., Lasorsa, D., Trocine, R. 2007. U. S. Dept. of the Interior, Minerals Management Ser-vice, Gulf of Mexico OCS Region, New Or-leans, LA, OC5 Study MMS.

Dechen, A.R., Haag, H.P., Carmello, Q.A. 1991. Funções dos micronutrientes nas plantas. In: Ferreira, M.E.; Da Cruz, M.C.P. Micronutrientes na agricultura. Piracicaba: POTAFOS/ CNPq.

Dias-Filho, M.B. 2011. Degradação de pasta-gens: processos, causas e estratégias de re-cuperação. 4. ed. rev., atual. e ampl. Belém, PA.

Dumon, J.C., Ernst, W.H.O. 1998. Titanium in plants. Journal of Plant Physiology 133, 203–209.

EMBRAPA. Empresa brasileira de pesquisa agropecuária. 2018. Sistema Brasileiro de Classificação de Solos. Centro Nacional de Pesquisa de Solos. 5ª Ed. Brasília, DF: Em-brapa.

Ewa, I., Oladipo, M., Dim, L.A. 1999. Horizon-tal and vertical distribution of selected met-als in the Kubani River, Nigeria as deter-mined by neutron activation analysis. Communications in Soil Science and Plant Analysis 30, 1081–1090.

Food and Agriculture Organization of the Unit-ed Nations. 2001. Defining conservation ag-riculture. In: The Economics of Conserva-tion Agriculture, FAO, Rome, Italy.

Foregs. Euro GeoSurveys Geochemical Base-line Database, 2011. Rb – Rubidium. Dis-ponível em: http://weppi.gtk.fi/publ/foregsatlas/text/Rb.pdf Acesso: 26 jun. 2018.

Frascá, M.H.B.O., Sartori, P.L.P. 1998. Mine-rais e rochas. In: Oliveira, A.M.S., Brito, S.N.A. (Eds.). Geologia de engenharia. São Paulo: Associação brasileira de geologia de engenharia.

Giller, K.E., Rowe, E.C., De Ridder, N., Van Keulen, H. 2006. Resource use dynamics and interactions in the tropics: scaling up in space and time. Agricultural Systems [online] 88. Disponível: https://doi.org/10.1016/j.agsy.2005.06.016. Acesso: 23 ago. 2018.

Hart, M.R., Quin, B.F., Nguyen, M.L. 2004. Phosphorus runoff from agricultural land and direct fertilizer effects: a review. Jour-nal of Environmental Quality 33, 1954-1972.

Hartemink A.E. 2003. Soil fertility decline in the tropics with case studies on plantations. CABI, Wallingford, U.K.

Heier, K.S., Billings, G.K. 1970. Lithium, Ru-bidium, Cesiun. In: Wedephohl, K.H., Ed., Handbook of geochemistry II. Springer-Verlag, Berlin and Heidelberg.

Helmke, P.A. 2000. The chemical composition of soils. In: Sumner, M.E. (Ed.), Handbook of Soil Science. CRC Press, Boca Raton, Flórida.

Horowitz, A. 1991. A primer on sediment-trace element chemistry. 2 ed., Chelsea, Michi-gan, Lewis Publishers.

Hunt, J.W., Anderson, B.S., Phillips, B.M., Tjeerdema, R.S., Richard, N., Connor, V., Worcester, K., Angelo, M., Bern, A., Fulfrost, B., Mulvaney, D. 2006. Spatial re-lationship between water quality and pesti-cide application rates in agricultural water-shed. Environmental Monitoring and As-sessment 121, 245–262.

Jenny, H. 1941. Factors of soil formation. New York: McGraw-Hill.

Johannsen, S., Armitage, P. 2010. Agricultural practice and the effects of agricultural land-use on water quality. Freshwater Forum 28, 45-49.

Jones, L.H.P., Jarvis, S.C. 1981. The fate of heavy metals. In: The chemistry of soil pro-cesses. Green, D.J. Hayes, M.H.B. Eds., p. 593, John Wiley e Sons, New York, NY, USA.

Kabata-Pendias, A. 2010. Trace elements in soils and plants. 4ª Ed. CRC Press. 2010. 548 p.

Kabata-Pendias, A.; Mukherjee, A.B. 2007. Trace elements from soil to human. Spring-er-Verlag, Berlin Heidelberg.

Kabata-Pendias, A. 1995 Agricultural problems related to excessive trace metal contents of soils. In: Heavy metals problems and solu-tions. In: Salomons. W., Forstner, U., Mader, P. eds. Springer-Verlag: Berlin.

Kirch P.V. 2005. Archaeology and global change: The holocene record. Annual Re-view of Environment and Resources 30, 409–440.

Kirpichtchikova, T.A., Manceau, A., Spadini, L., Panfili, F., Marcus, M.A., Jacquet, T. 2006. Speciation and solubility of heavy metals in contaminated soil using X-ray mi-crofluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta [online] 70. Disponível: https://doi.org/10.1016/j.gca.2006.02.006. Acesso: 23 ago. 2018.

Krishna, A.K., Govil, P.K. 2005. Heavy metal distribution and contamination in soils of Thane-Belapur industrial development area, Mumbai. Western India Environment Geol-ogy 47, 1054–1061.

Kuplich, T.M.; Capoane, V.; Costa, L.F.F. 2018. O avanço da soja no bioma Pampa. Boletim Geográfico do Rio Grande do Sul 31, 83–100.

Lal, R., Hall, G.G., Miller, F.P. 1989. Soil deg-radation: I. Basic processes. Land degrada-tion e development 1, 51–69.

Lasat, M.M. 2000. Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substances Research [online] 2. Disponível: https://doi.org/10.4148/1090-7025.1015. Acesso: 23 jul. 2018.

Ling, W., Shen, Q., Gao, Y., Gu, X., Yang, Z. 2007. Use of bentonite to control the release of copper from contaminated soils. Austral-ian Journal of Soil Research [online] 45. Disponível: https://doi.org/10.1071/SR07079. Acesso: 23 jul. 2018.

Lindsay, W.L., Vlek, P.L.G., Chien, S.H. 1989. Phosphate minerals. In: Minerals in soil en-vironment, 2nd edn. Eds Dixon, J.B.; Weed, S.B. p. 1089–1130. Soil Science Society of America, Madison, WI, USA.

Mielke, J.E. 1979. Composition of the Earth’s crust and distribution of the elements. In: Siegel, F.R. (Ed.) Reviews of research on modern problems in geochemistry. Paris: In-ternational Association of Geochemistry and Cosmochemistry, UNESCO.

Marijia, R., Davor, R. 2003. Heavy metals dis-tribution in agricultural topsoils in urban ar-ea. Environment Geology [online] 43. Dis-ponível: https://doi.org/ 10.1007/s00254-002-0694-9. Acesso: 23 ago. 2018.

Maslin, P., Maier, R.M. 2000. Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils. Biore-mediation Journal [online] 4. Disponível: https://doi.org/10.1080/10889860091114266. Acesso: 23 ago. 2018.

McLaughlin, M.J., Zarcinas, B.A., Stevens, D.P., Cook, N. 2000a. Soil testing for heavy metals. Communications in Soil Science and Plant Analysis [online] 31. Disponível: https://doi.org/10.1080/00103620009370531. Acesso: 23 ago. 2018.

McLaughlin, M.J., Hamon, R.E., Mclaren, R.G., Speir, T.W., Rogers, S.L. 2000b. Re-view: a bioavailability-based rationale for controlling metal and metalloid contamina-tion of agricultural land in Australia and New Zealand. Australian Journal of Soil Re-search [online] 38. Disponível: https://doi.org/10.1071/SR99128. Acesso: 23 ago. 2018.

McLaughlin, M.J., Parker, D.R., Clarke, J.M. 1999. Metals and micronutrients–food safe-ty issues. Field Crops Research [online] 60. Disponível: https://doi.org/10.1016/S0378-4290(98)00137-3. Acesso: 23 ago. 2018.

Menegotto, E., Sartori, P.L.P., Maciel Filho, C.L., 1968. Nova sequência sedimentar so-bre a Serra Geral no Rio Grande do Sul. Pu-blicação Especial do Instituto de Solos e Culturas, Seção Geologia e Mineralogia, Santa Maria 1, 1-19.

Mitsch, W.J., Gosselink, J.G. 1993. Wetlands, 2 ed. Van Nostrand Reinhold, New York.

Natarajan, V., Al, N.K., Godbole, S.V. 2012. Determination of uranium and thorium in zircon by energy dispersive X-ray fluores-cence technique. Indian Journal of Chemi-cal Technology 19, 399–402.

Naveed, M., Moldrup, P., Vogel, H-J., Laman-dé, M., Jonge, L.W. 2014. Impact of long-term fertilization practice on soil structure evolution. Geoderma [online] 217–218. Disponível: https://doi.org/10.1016/j.geoderma.2013.12.001. Acesso: 23 jul. 2018.

Needleman, H.L. 1980. Low level lead expo-sure: the clinical implications of current re-search. New York: Raven Press.

Obour, A.K., Philstahlman, P.W., Holman, J.D. 2016. Soil chemical properties as influenced by long-term glyphosate-resistant corn and soybean production in the central Great Plains, USA. Geoderma [online] 277. Dis-ponível: https://doi.org/10.1016/j.geoderma.2016.04.029. Acesso: 23 jul. 2018.

Rawlins, B.G., Mcgrath, S.P., Scheib A.J., Breward, N., Cave, M., Lister, T.R., Ingham, M., Gowing, C., Carter, S. 2012. The ad-vanced soil geochemical atlas of England and Wales. British Geological Survey, Key-worth.

Reddy, K.R., Delaune R.D. 2008. Biogeochem-istry of Wetlands: Science and Applications, CRC Press, Boca Raton, Flórida.

Redman C.L. 1999. Human impact on ancient environments. University of Arizona Press.

Robertson, A.I., Rowling, R.W. 2000. Effects of livestock on riparian zone vegetation in an Australian dryland river. Regulated Riv-ers: Research & Management [online] 16. Disponível: https://doi.org/10.1002/1099-1646(200009/10)16:5<527:AID-RRR602>3.0.CO;2-W. Acesso: 23 jul. 2018.

Rossato, M.S. 2011. Os climas do Rio Grande do Sul: variabilidade, tendências e tipologia. Tese (Doutorado em Geografia). Porto Ale-gre, UFRGS.

Phillips, J. 1989. Fluvial Sediment Storage in Wetlands. Water Resources Bulletin [online] 25. Disponível: https://doi.org/ 10.1111/j.1752-1688.1989.tb05402.x. Acesso: 23 jul. 2018.

Saglam, M., Dengiz, O. 2012. Influence of selected land use types and soil texture in-teractions on some soil physical characteris-tics in an alluvial land. International Journal of Plant Production 3, 508–513.

Schilling, K.E., Wolter, C.F. 2001. Contribution of base flow to nonpoint source pollution loads in an agricultural watershed. Ground Water [online] 39. Disponível: https://doi.org/10.1111/j.1745-6584.2001.tb00350.x. Acesso: 23 jul. 2018.

Scragg, A. 2006. Environmental Biotechnolo-gy. Oxford University Press, Oxford, UK.

Silveira, V.C.P., González, J.A., Fonseca, E.L. 2017. Land use changes after the period commodities rising price in the Rio Grande do Sul State, Brazil. Ciência Rural [online] 47. Disponível: http://dx.doi.org/10.1590/0103-8478cr20160647. Acesso: 23 ago. 2018.

Smith, I.C., Carson, B.L. 1978. Trace metals in the environment: v.3—zirconium. Ann Ar-bor: Ann Arbor Science Publishers Inc.

Tiecher, T., Caner, L., Minella, J.P.G., Pelle-grini, A., Capoane, V., Alvarez, J.W.R., Schaefer, G.L., Santos, D.R. 2017. Tracing sediment sources in two paired agricultural catchments with different riparian forest and wetland proportion in southern Brazil. Geo-derma (Amsterdam) [online] 285. Disponí-vel: https://doi.org/10.1016/j.geoderma.2016.10.008. Acesso: 23 ago. 2018.

Turk, J.K., Chadwick, O.A., Graham, R.C. 2011. Pedogenic Processes. In. Huang, P.M.; Li, Y.; Sumner, M.E. Eds. Handbook of Soil Science. 2 ed. CRC Press, New York.

Wei, J-B., Xiao, D.-N., Zeng, H., Fu, Y.-K. 2008. Spatial variability of soil properties in relation to land use and topography in a typ-ical small watershed of the black soil region, northeastern China. Environmental Geology 53, 663–672.

White, P.J., Brown, P.H. 2012. Plant nutrition for sustainable development and global health. Annals of Botany [online] 105. Dis-ponível: http://dx.doi.org/10.1093/aob/mcq085. Acesso: 23 jul. 2018.

Williams, D.E., Vlamis, J., Pukite, A.H., Corey, J.E. 1987. Metal movementin sludge amended soils. A nine-year study. Soil Sci-ence 143, 124–131.

Wuana, R.A., Okieimen, F.E. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notice Ecology [online] 1-20. Disponível: http://dx.doi.org/10.5402/2011/402647. Acesso: 23 jul. 2018.

Yemefack, M., Rossiter, D.G., Njomgang, R. 2005. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Ge-oderma [online] 125, 117–143. Disponível: https://doi.org/10.1016/j.geoderma.2004.07.007. Acesso: 23 jul. 2018.

Zafar, M., Tiecher, T., Capoane, V., Troian, A., Santos, D.R. 2017. Characteristics, lability and distribution of phosphorus in suspended sediment from a subtropical catchment un-der diverse anthropic pressure in Southern Brazil. Ecological Engineering [online] 100. Disponível: https://doi.org/10.1016/j.ecoleng.2016.12.008. Acesso: 23 jul. 2018.

Zhang, W., Vries, W., Thomas, B.W., Hao, X., Shi, X. 2017. Impacts of long-term nitrogen fertilization on acid buffering rates and mechanisms of a slightly calcareous clay soil. Geoderma [online] 305. Disponível: https://doi.org/10.1016/j.geoderma.2017.05.021. Acesso: 23 jul. 2018.

Zhang, X.C., Friedrich, J.M., Nearing, M.A., Norton, L.D. 2001. Potential use of rare earth oxides as tracers for soil erosion and aggregation studies. Soil Science Society of America Journal [online] 65. Disponível: https://doi.org/ 10.2136/sssaj2001.6551508x. Acesso: 23 jul. 2018.

Zhu, M., Tan, B.S., Dang, H., Zhang, Q. 2011. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall. Journal of Environmental Radioac-tivity [online] 102. Disponível: https://doi.org/10.1016/j.jenvrad.2011.07.007. Acesso: 23 jul. 2018.




DOI: https://doi.org/10.26848/rbgf.v11.07.p2315-2334

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License