NÍVEIS DE CONHECIMENTO ESPERADOS DOS ESTUDANTES COMO AUXÍLIO PARA O ENSINO E APRENDIZAGEM DAS NOÇÕES DE PRIMITIVA DE UMA FUNÇÃO E INTEGRAL DE RIEMANN

Marlene Alves Dias, Pedro Mateus

Resumo


Este trabalho expõe parte de uma pesquisa sobre as noções matemáticas a ensinar nos Ensinos Fundamental, Médio e Superior e as relações destas com o saber, do ponto de vista antropológico, como meio de compreender questões associadas à transição entre as diferentes etapas da escolaridade. Apresentamos aqui uma investigação sobre as noções de primitiva de uma função e de integral de Riemann como setor de estudo dessa transição, tratando mais especificamente do tema ‘cálculo de áreas’. Para tal, focalizamos sucintamente o referencial teórico da pesquisa: a Teoria Antropológica do Didático (de Chevallard) e os três níveis de conhecimento esperados dos estudantes (segundo Robert), níveis estes que conduzem a considerar ferramentas didáticas como as noções de quadro, mudança de quadro, ponto de vista e as representações simbólicas, aqui tratadas por meio de objetos ostensivos e não ostensivos. Também apresentamos a metodologia da pesquisa, assim como a grade de análise construída para avaliar como são tratados esses três níveis de conhecimento para o estudo das noções de primitiva de uma função e de integral de Riemann, bem como sua aplicação sobre o cálculo de áreas. Apresentamos um exemplo de aplicação da grade e os resultados da análise de dois livros didáticos e da macroavaliação ENADE que nos permitiram formular algumas conclusões sobre a importância de trabalhos que considerem os conhecimentos retrospectivos dos estudantes. 

ABSTRACT

This article reports part of an investigation on the mathematical notions to be taught during primary, secondary, and tertiary education programs and the relationships between these notions and knowledge, from an anthropological point of view, with the purpose of elucidating issues associated with the transition between educational levels. To this end, the notions of primitive of a function and Riemann integral were focused as a study sector in this transition, more specifically within the topic ‘calculation of areas’. Chevallard’s Anthropological Theory of the Didactic and Robert’s three levels of knowledge expected of students composed the core theoretical framework, of which a summary is provided. In the light of these levels, didactic tools such as the notions of setting, change of setting, point of view, and symbolic representations were addressed in terms of ostensive and non-ostensive objects. The research methodology is also reported, along with an analysis grid developed to evaluate how these three levels of knowledge are tackled for the study of primitive of a function and Riemann integral and how these notions are applied to the calculation of areas. An example of use of this grid is provided, together with an analysis of two textbooks and the results of the ENADE macroevaluation of Brazilian higher education programs. These data allowed us to draw conclusions on the importance of investigations that take into account the retrospective knowledge held by students.


Palavras-chave


Níveis de conhecimento; Teoria Antropológica do Didático; Primitiva de uma função e integral de Riemann

Texto completo:

PDF

Apontamentos

  • Não há apontamentos.


Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.

ISSN 2177-9309

Contato: emteia@gente.eti.br