Análise de não Homogeneidades de Séries de Vazão de Captações de Nascentes na Bacia Hidrográfica do Rio Gramame, PB, Brasil

Adriana Moura Martins, Hamilcar José Almeida Filgueira, Azamor Cirne de Azevedo Filho, Tarciso Cabral da Silva, Marcelo Henriques da Silva Júnior

Resumo


A bacia hidrográfica do rio Gramame, no litoral sul paraibano, apresenta diversas nascentes perenes de água com vazões significativas que atendem a comunidades locais para diversos usos. Este trabalho teve como objetivo analisar quatro séries de vazões de captações de nascentes na região sudoeste da bacia e de dados pluviométricos, quanto à sua homogeneidade, entre os anos de 2010 e 2013. A questão motivadora da análise foi a suposta diminuição das vazões de captação das nascentes por consequência da construção de estradas e desmatamentos em áreas do entorno dessas nascentes. Para a análise da homogeneidade das séries, foram empregados testes estatísticos para determinação dos possíveis pontos de ruptura e de verificação da estacionariedade. Foi constatado que houve ruptura em todas as séries de vazões analisadas.

 

 

Analysis of non-homogeneities of time series of flow in sources in the Gramame River basin, Paraíba State, Brazil

 

A B S T R A C T

The Gramame river basin on the south coast of Paraiba State, has several perennial springs with significant flows that serve local communities for various uses. However, the construction of roads, in areas around the springs, and recent deforestation indicated to have caused the decrease in flows captured from sources in the basin. This work aimed at analyzing four data series of flows captured from sources in the southwestern basin and the rainfall data series searching to verify their homogeneity, between the years 2010 and 2013. To analyze the homogeneity of the series, statistical tests were used to find significant change points and to verify the stationarity. It was found that rupture occurred in all series of flow analyzed.

Keywords: flow from springs, hydrometeorological time series, groundwater.


Palavras-chave


Vazões de nascentes; Séries hidrometeorológicas temporais; Águas subterrâneas.

Texto completo:

PDF

Referências


Aith, F.M.A., Rothbarth, R., 2015. O estatuto jurídico das águas no Brasil. Estudos Avançados 29(84), 163-177. Disponível: https://doi.org/10.1590/S0103-40142015000200011. Acesso: 12 ago. 2019.

Ahmed, K., Shahid, S., Ismail, T., Nawaz, N., Wang, X.-J., 2018. Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmosfera 31(3), 301-316. Disponível: https://doi.org/10.20937/atm.2018.31.03.06. Acesso: 26 ago. 2020.

Andang’o, H.A., Ouma, J.O., Muthama, N.J., Opere, A.O., 2016. Investigating the homogeneity of monthly rainfall records in Kenya. J. Meteorol. Relat. Sci. 9(4), 48-54. Disponível: http://dx.doi.org/10.20987/jmrs.4.05.2016. Acesso: 26 ago. 2020.

Andrade, E.M., Aquino, D.N., Luna, N.R.S., Lopes, F.B., Crisóstomo, L.A., 2016. Dinâmica do nível freático e da salinização das águas subterrâneas em áreas irrigadas. Revista Ceres 63(5), 621-630. Disponível: https://doi.org/10.1590/0034-737x201663050005. Acesso: 03 mai. 2019.

Bru, N., Biritxinaga, E., D’Amico, F., 2011. Detection of significant changes in short time series: applications to the analysis of annual routines in behavioural ecology and the analysis of breaks in abundance. In: Chan, F.; Marinova, D.; Anderssen, R. S. (Ed.). International congress of modelling and simulation, 19, MODSIM 2011, Perth, Australia, 12-16 December 2011. Proceedings… Modelling and Simulation Society of Australia and New Zealand: Australia, 1,652-1,658.

Cabral da Silva, T., Filgueira, H.J.A., Cavalcanti, A.K., Alencar, R.I.S., Pedrosa Filho, L.A., 2011. Caracterização de captações de águas de nascentes na bacia do rio Gramame: avaliação quantitativa preliminar. In: Simpósio Brasileiro de Recursos Hídricos, 19. Maceió, AL, 27 de novembro a 01 de dezembro de 2011. Anais... Porto Alegre: ABRH, 1-16.

Cai, Z., Ofterdinger, U., 2016. Analysis of groundwater-level response to rainfall and recharge estimates in fractured hard rock aquifers, NW Ireland. Journal of Hydrology 535, 71-84. Disponível: https://doi.org/10.1016/j.jhydrol.2016.01.066. Acesso: 03 jun. 2019.

Conover, W.J., 1999. Practical nonparametric statistics. 3. ed. New York: Wiley, 592p.

Costa, F.F., 2011. Avaliação ambiental em áreas de nascentes da bacia hidrográfica do alto curso do Rio Gramame – PB. Dissertação (Mestrado em Engenharia Urbana e Ambiental) - Universidade Federal da Paraíba. João Pessoa, Paraíba, 98p.

D’Agostino, R.B., 1971. An omnibus test of normality for moderate and large size samples. Biometrika 58(2), 341-348.

Daker, A., 1983. Captação, elevação e melhoramento da água. A água na agricultura 2, 6. ed. ver. E ampl. Rio de Janeiro: Freitas Bastos, 408p.

Davis, J.A., Kerezsy, A., Nicol, S., 2017. Springs: conserving perennial water is critical in arid landscapes. Biological Conservation 211, 30-35. Disponível: https://doi.org/10.1016/j.biocon.2016.12.036. Acesso: 20 mai. 2019.

Di Lorenzo, I.D.N., 2007. Reflorestamento das áreas de nascentes do município de Pedras de Fogo. Pedras de Fogo, PB: EMATER/PB, 14p.

Frain, J., 2007. Small sample power of tests of normality when the alternative is an α-stable distribution. TEP Working Paper No. 0207. Trinity Economic Papers, Department of Economics, Trinity College Dublin. 51p.

Gao, P., Mu, X.-M., Wang, F., Li, R., 2011. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrology and Earth System Sciences 15, 1-10. Disponível: https://doi.org/10.5194/hess-15-1-2011. Acesso: 23 set. 2019.

García-Marín, A.P., Estévez, J., Morbidelli, R., Saltalippi, C., Ayuso-Muñoz, J.L., Flammini, A., 2020. Assessing inhomogeneities in extreme annual rainfall data series by multifractal approach. Water. 12(4). 1030. Disponível: https://doi.org/10.3390/w12041030. Acesso: 26 ago. 2020.

Gebrehiwot, S.G., Di Baldassarre, G., Bishop, K., Halldin, S., Breuer, L., 2019. Is observation uncertainty masking the signal of land use change impacts on hydrology?. Journal of Hydrology 570, 393-400. Disponível: https://doi.org/10.1016/j.jhydrol.2018.12.058. Acesso:29 ago. 2020.

Grimaldi, S., Crispino, G., Doglioni, A., Summa, G., Simeoni, A., 2015. Data-driven analysis of discharge variations at Mercure Spring south Italy. Engineering Geology for Society and Territory 5, 655-659. Disponível: https://doi.org/10.1007/978-3-319-09048-1_128. Acesso: 23 mai. 2019.

Gupta, R.S., 2017. Hydrology & hydraulic systems. 4. ed. Waveland Press, Inc., Long Grove, Illinois, USA. 888p.

Hakuba, M., Sanchez-Lorenzo, A., Folini, D., Wild, M., 2013. Testing the homogeneity of short-term surface solar radiation series in Europe. AIP Conference Proceedings 1531, 700-703. Disponível: https://doi.org/10.1063/1.4804866. Acesso: 20 jun. 2019.

Kløve, B., Ala-Aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, H., Kvœrner, J., Lundberg, A., Mileusnić, M., Moszczynska, A., Muotka, T., Preda, E., Rossi, P., Siergieiev, D., Šimek, J., Wachniew, P., Angheluta, V., Widerlund, A., 2011. Groundwater dependent ecosystems. Part I: hydroecological status and trends. Environmental Science & Policy 14, 770-781. Disponível: https://doi.org/10.1016/j.envsci.2011.04.002. Acesso: 14 ago. 2019.

Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J.J., Kupfersberger, H., Kværner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., Uvo, C.B., Velasco, E., Pulido-Velazquez, M., 2014. Climate change impacts on groundwater and dependent ecosystems. Journal of Hydrology 518, 250-266. Disponível: https://doi.org/10.1016/j.jhydrol.2013.06.037. Acesso: 14 ago. 2019.

Kundzewicz, Z.W., Robson, A.J., 2004. Change detection in hydrological records - a review of the methodology. Hydrological Sciences. Journal des Sciences Hydrologiques 49(1), 7-19.

Mallakpour, I., Villarini, G., 2016. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrological Sciences Journal 61(2), 245-254. Disponível: https://doi.org/10.1080/02626667.2015.1008482. Acesso: 20 jun. 2019.

Memarian, H., Balasundram, S.K., 2016. Hydrological trend analysis integrated with landscape analysis at the watershed scale (case study: Langat Basin, Malaysia). In: Almusaed, A. (Ed.), Landscape ecology: the influences of land use and anthropogenic impacts of landscape creation. Chapter 4, InTech Publishing, Rijeka, Croatia, 61-84. Disponível: http://dx.doi.org/10.5772/62463. Acesso: 25 ago. 2020.

Mohammadi, Z., Shoja, A., 2014. Effect of annual rainfall amount on characteristics of karst spring and hydrograph. Carbonates Evaporites 29, 279-289.

Naghettini, M. (ed.), 2016. Fundamentals of statistical hydrology 1. 1. ed. Switzerland: Springer Nature, 671p.

Nazemosadat, M.J., Samani, N., Barry, D.A., Niko, M.M., 2006. ENSO forcing on climate change in Iran: precipitation analysis. Iranian Journal of Science and Technology, Transaction B, Engineering 30(B4), 555-565.

Orwin, J., Pennart, H., 2012.Determination of water monitoring Standards for oil and gas operation. Calgary, Alberta, Canada: Matrix Solutions Inc., 86p. (Report Prepared for: Canadian Association of Petroleum Producers, and Shale Gas Water Technical Committee).

Peterson, T.C., Easterling, D.R., Karl, T. R., Groisman, P., Nicholls, N., Plummer, N., Torok, S., Auer, I., Boehm, R., Gullett, D., Vincent, L., Heino, R., Tuomenvirta, H., Mestre, O., Szentimrey, T., Salinger, J., Førland, E.J., Hanssen-Bauer, I., Alexandersson, H., Jones, P., Parker, D., 1998. Homogeneity adjustments of in situ atmospheric climate data: a review. International Journal of Climatology 18, 1493-1517.

Pettitt, A.N., 1979. A non-parametric approach to the change-point problem. Applied Statistics 28(2), 126-135.

Ramos, S.T.B., Mafra, M.S.H., Rech, T.D., Siegloch, A.E., Rech, A.F., 2018.Water quality of spring in areas under different land uses in the southern highlands of Santa Catarina. Ambiente & Água 13(4, e2201), 1-10. Disponível: https://doi.org/10.4136/ambi-agua.2201. Acesso: 20 out. 2019.

Robertson, W.N., Allen, J.T., Wolaver, B.D., Shap Jr., J.M., 2019. Aridland spring response to mesoscale precipitation: implications for groundwater-dependent ecosystem sustainability. Journal of Hydrology 570, 850-862. Disponível: https://doi.org/10.1016/j.jhydrol.2018.12.074. Acesso: 21 set. 2019.

Rocha, A.P.T., Abreu, J.S., Furtado, D.A., Baracuhy, J.G.V., Fernandes Neto, S., 2011. Manejo ecológico integrado de bacias hidrográficas no semiárido brasileiro. Campina Grande: EPGRAF 1, 332.

Rybski, D., Neumann, J., 2011. A review on the Pettitt test. In: Kropp, J.P., Schellnhuber, H.-J. (eds.), In extremis. Berlin: Springer, 202-213. Disponível: https://doi.org/10.1007/978-3-642-14863-7_10. Acesso: 14 set. 2019.

Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591-611.

Shen, D.; Bao, W.; Ni, P., 2018. A method for detecting abrupt change of sediment discharge in the Loess Plateau, China. Water 10(9), 1183. Disponível: https://doi.org/10.3390/w10091183. Acesso: 26 jul. 2020.

Sheskin, D.J., 2004. Handbook of parametric and nonparametric statistical procedures. 3. ed. Florida: Chapman & Hall/CRC, 1,193p.

Smadi, M.M., Zghoul, A., 2006. A sudden change in rainfall characteristics in Amman, Jordan during the Mid 1950’s. American Journal of Environmental Sciences 2(3), 84-91.

Song, X., Zhang, J., Zhang, C., Zou, X., 2019. A comprehensive analysis of the changes in precipitation patterns over Beijing during 1960-2012. Advances in Meteorology 2019, 1-22. Disponível: https://doi.org/10.1155/2019/6364040. Acesso: 26 ago. 2020.

Sun, Y.; Takemon, Y; Yamashiki, Y., 2019. Freshwater spring indicator taxa of benthic invertebrates. Ecohydrology & Hydrobiology, (in press). Disponível: https://doi.org/10.1016/j.ecohyd.2019.02.003. Acesso: 21 nov. 2019.

Thode Jr., H.C., 2002. Testing for normality. New York: Marcel Dekker Inc., 368p. Disponível: https://doi.org/10.1201/9780203910894. Acesso: 14 set. 2019.

Verstraeten, G., Poesen, J., Demarée, G., Salles, C., 2006. Long-term (105 years) variability in rain erosivity as derived from10-min rain fall depth data for Ukkel (Brussels, Belgium): implications for assessing soil erosion rates. Journal of Geophysical Research 111(D22109), 1-11. Disponível https://doi.org/10.1029/2006JD007169. Acesso: 03 jun. 2019.

Villarini, G., Serinaldi, F., Smith, J.A., Krajewski, W.F., 2009. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resources Research 45(W08417), 1-17. Disponível: https://doi.org/10.1029/2008WR007645. Acesso: 12 ago. 2019.

Wijngaard, J.B., Klein Tank, A.M.G., Können, G.P., 2003. Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology 23, 679-692. https://doi.org/10.1002/joc.906. Acesso: 20 mai. 2019.

Zhang, S, Lu, X.X., 2009. Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. Catena 77(2), 130-142. Disponível: https://doi.org/10.1016/j.catena.2008.09.001. Acesso: 18 jul. 2019.




DOI: https://doi.org/10.26848/rbgf.v13.6.p2896-2907

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License