Spatiotemporal variability of Humidex Index over the Northeast Region of Brazil

Autores

DOI:

https://doi.org/10.26848/rbgf.v14.2.p591-606

Palavras-chave:

clima, atmosfera, conforto térmico, matopiba.

Resumo

O conforto térmico, Humidex, é uma variável muito importante para avaliar o grau de estresse térmico em seres vivos. Por depender de variáveis climáticas, o Humidex tem uma variação espaço-tempo-intensidade condicionada a vários atenuadores do tempo e do clima. Assim, o objetivo deste trabalho é verificar possíveis tendências e análises espaço-temporais do índice Humidex no Nordeste do Brasil (NEB). Foram utilizados os dados do ERA5 distribuídos pelo ECMWF para o período de 1990 a 2019. Constatou-se que a região do MATOPIBA foi a que mais se destacou com tendências positivas de desconforto sobre o NEB, assim como a região com os maiores índices Humidex. Enquanto na costa do NEB havia vales baixos de Humidex que podem estar associados à influência oceânica. Observou-se que o período noturno tem tendência positiva no NEB, principalmente no MATOPIBA. Além da escala horária, constatou-se também que na escala mensal, sazonal e anual, esta região do MATOPIBA tem destaque. Isso se deve ao fato da substituição da floresta natural pela produção agrícola, na qual, afeta diretamente o balanço energético desta região. A região de MATOPIBA apresentou as maiores tendências de temperatura em NEB com taxa positiva variando de + 0,008ºC / Hora / Mês a 0,01ºC / Hora / Mês. A tendência sazonal de umidade foi marginal apenas na região costeira, com poucas áreas com valores máximos de 0,01 ºC / ano a 0,02 ºC / ano. Aproximadamente 2,41% do NEB apresenta tendência igual ou superior a +0,06 ºC / Ano e 24,21% do NEB com tendência igual ou superior a + 0,05 ºC / Ano. 

Referências

Angelini, L.P., Silva, P. C. B.S., Fausto, M. A., Machado, N. G., Biudes, M. S., 2017. Balanço de Energia nas Condições de Mudanças de Uso do Solo na Região Sul do Estado de Mato Grosso. Revista Brasileira de Meteorologia, 32(3), 353-363. https://doi.org/10.1590/0102-77863230003

Amasuomo, T.T.; Amasuomo, J.O., 2016. Perceived Thermal Discomfort and Stress Behaviours Affecting Students’ Learning in Lecture Theatres in the Humid Tropics. Buildings, 6, 18.

Brake, D.J., Bates, G.P., 2003. Fluid losses and hydration status of industrial workers under thermal stress working extended shiftsOccupational and Environmental Medicine; 60:90-96.

Buitrago, M.F., Groen, T. A., Hecker, C. A., Skidmore, A. K. 2016. Changes in thermal infrared spectra of plants caused by temperature and water stress, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 111, Pages 22-31. https://doi.org/10.1016/j.isprsjprs.2015.11.003.

Brito, S.S.; Cunha, A.P.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Carvalho, M.A.,2018. Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. Int. J. Climatol., 38, 517–529

Cabral Júnior, J.B., Silva, C.M.S.e., de Almeida, H.A. et al., 2019. Detecting linear trend of reference evapotranspiration in irrigated farming areas in Brazil’s semiarid region. Theor Appl Climatol 138, 215–225. https://doi.org/10.1007/s00704-019-02816-w

Cai, J., 2019. humidity: Calculate Water Vapor Measures from Temperature and Dew Point. R package version 0.1.5.

Castelhano F. J., 2017. /Laboclima - Universidade Federal do Paraná (2017). ThermIndex: Calculate Thermal Indexes. R package version 0.2.0. https://CRAN.R-project.org/package=ThermIndex

Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C., 2020.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020.

Cunha A.P.M.A., Alvalá, R.C.S., Kubota, P.Y., Vieira, R.M.S.P (2015a) Impacts of land use and land cover changes on the climate over Northeast Brazil. Atmos Sci Lett 16:219–227. https://doi.org/10.1002/asl2.543

Cunha AP et al (2015b) Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agric For Meteorol 214–215:494–505.

Cunha, A.P.M.A., Tomasella, J., Ribeiro-Neto, G.G., Brown, M., Garcia, S.R., Brito, S.B., Carvalho, M.A., 2018. Changes in the spatial–temporal patterns of droughts in the Brazilian Northeast. Atmos. Sci. Lett., 19,855–862.

d’Ambrosio Alfano FR, Palella BI, Riccio G (2007) The role of measurement accuracy on the heat stress assessment according to ISO 7933: 2004. WIT Transactions on Biomedicine and Health 11, 115–24.

de Medeiros, F.J., de Oliveira, C.P. & Torres, R.R. Climatic aspects and vertical structure circulation associated with the severe drought in Northeast Brazil (2012–2016). Clim Dyn 55, 2327–2341 (2020). https://doi.org/10.1007/s00382-020-05385-1

Di Napoli, C.; Barnard, C.; Prudhomme, C.; Cloke, H.L.; Pappenberger, F. ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geosci. Data J. 2020, 1–9.

Domínguez-Amarillo, S.; Fernández-Agüera, J.; González, M.M.; Cuerdo-Vilches, T. Overheating in Schools: Factors Determining Children’s Perceptions of Overall Comfort Indoors. Sustainability 2020, 12, 5772.

Evans, J.S., 2020. _spatialEco_. R package version 1.3-1, https://github.com/jeffreyevans/spatialEco>.

Fedorova, N., Levit, V., Cavalcante, L. C. V., 2020. Impacts of Tropical Cyclones in the Northern Atlantic on Adverse Phenomena Formation in Northeastern Brazil, Current Topics in Tropical Cyclone Research [Working Title], 10.5772/intechopen.82936.

Fedorova, N., Levit, V., Silveira, M.H.S., Pontes Da Silva, B.F., Amiranashvili, A.G., 2009. Mesoscale Convective Complexes on the Northeastern Coast of Brazil. Journal of the Georgian Geophysical Society, Issue B: Physics of Atmosphere, Ocean and Space Plasma, 13B, 36-49.

Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D., Neigh, C., Reichstein, M., 2013. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sensing, 5(5), 2113-2144.

Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U., Carvalhais, N., 2015. Co-dominant water control on global inter-annual variability and trends in land surface phenology and greenness. Global Change Biology, 21(9), 3414-3435.

García, M.M., Martín, J.R., Soriano, L.R., Dávila, F.P.,2015. Observed impact of land uses and soil types on cloud-to-ground lightning in Castilla-Leon (Spain). Atmospheric Research. Volume 166, 2015, Pages 233-238. https://doi.org/10.1016/j.atmosres.2015.07.009

Gaspari, J., Fabbri, K., Lucchi, M., 2018.The use of outdoor microclimate analysis to support decision making process: Case study of Bufalini square in Cesena. Sustainable Cities and Society. Volume 42, October 2018, Pages 206-215. https://doi.org/10.1016/j.scs.2018.07.015

Giannini, A., Chiang, J. C. H., Cane, M. A., Kushnir, Y., Seager, R., 2001. “The ENSO teleconnection to the tropical Atlantic ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas,” J. Clim. 14(24), 4530–4544. https://doi.org/10.1175/1520-0442(2001)014<4530:TETTTT>2.0.CO;2

Hastenrath, S. and Heller, L.,1977. Dynamic of Climatic Hazards in Northeast Brazil. Quarterly Journal of the Royal Meteorological Society, 110, 411-425. http://dx.doi.org/10.1002/qj.49711046407

He, B.J., Ding, L., Prasad, D. Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence, Sustainable Cities and Society, Volume 60, 2020a, 102289, ISSN 2210-6707, https://doi.org/10.1016/j.scs.2020.102289.

He, B.J., Ding, L., Prasad, D. Outdoor thermal environment of an open space under sea breeze: A mobile experience in a coastal city of Sydney, Australia, Urban Climate, Volume 31, 2020b, 100567, ISSN 2212-0955, https://doi.org/10.1016/j.uclim.2019.100567.

Hersbach, H. et al. Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter 17–24 (2019).

Hersbach, H., 2017. ERA5: the new reanalysis of weather and climate data. ECMWF Science blog.

Hersbach, H. et al., 2020. The ERA5 global reanalysis. Q J R Meteorol Soc 1– 51, https://doi.org/10.1002/qj.3803.

Hijmans, R.J., 2020. raster: Geographic Data Analysis and Modeling. R package version 3.3-13. https://CRAN.R-project.org/package=raster

Hirota, M., Oyama, M.D., Nobre, C., 2011. Concurrent climate impacts of tropical South America land‐cover change. Atmos. Sci. Let. 12: 261–267.

IBGE,2020. https://censo2010.ibge.gov.br/sinopse/index.php?dados=4&uf=00

Bao-Jie He, Lan Ding, Deo Prasad, Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence, Sustainable Cities and Society, Volume 60, 2020a, 102289, ISSN 2210-6707, https://doi.org/10.1016/j.scs.2020.102289.

Bao-Jie He, Lan Ding, Deo Prasad, Outdoor thermal environment of an open space under sea breeze: A mobile experience in a coastal city of Sydney, Australia, Urban Climate, Volume 31, 2020b, 100567, ISSN 2212-0955, https://doi.org/10.1016/j.uclim.2019.100567.

Huimin Liu, Bo Huang, Sihang Gao, Jiong Wang, Chen Yang, Rongrong Li, Impacts of the evolving urban development on intra-urban surface thermal environment: Evidence from 323 Chinese cities, Science of The Total Environment,Volume 771, 2021, 144810, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.144810.

Kendall, M.G.,1975. Rank Correlation Methods. Griffin, London. Kogan F.N., Guo, W., 2017. Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int J Remote Sens 38(1):161–178.

Kousky, V.E. and Gan, M.A., 1981. Upper Tropospheric Cyclonic Vortices in the Tropical South Atlantic. Tellus, 33, 538-551. http://dx.doi.org/10.1111/j.2153-3490.1981.tb01780.x

Krishnamurthy, V., Misra, V., 2010. Observed ENSO teleconnections with the SouthAmerican monsoon system. Atmos. Sci. Let. 11: 7–12.

Kulikova, I., Fedorova, N., Levit, V., Cordeiro, E. S., 2014. Sea Surface Temperature Anomaly and Precipitation Distribution in the Alagoas State of the Brazilian Northeast, Natural Science, 10.4236/ns.2014.614104, 06, 14, (1159-1178).

Lamigueiro, O.P., Hijmans, R., 2020, rasterVis. R package version 0.48. Neuwirth, E., 2014. RColorBrewer: ColorBrewer Palettes. R package. version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer

Li, Xian-Xiang, 2020. Heat wave trends in Southeast Asia during 1979–2018: The impact of humidity, Science of The Total Environment, 10.1016/j.scitotenv.2020.137664, 721, (137664).

Liu, H., Huang, B., Gao, S., Wang, J., Yang, C., R. Li, R., Impacts of the evolving urban development on intra-urban surface thermal environment: Evidence from 323 Chinese cities, Science of The Total Environment,Volume 771, 2021, 144810, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.144810.

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica, v.13, n. 3, p.245-259.

Marçal, N.A., Silva, R.M., Santos, A.G., Santos, J.S., 2019. Analysis of the environmental thermal comfort conditions in public squares in the semiarid region of northeastern Brazil. Building and Environment. Volume 152, Pages 145-159. https://doi.org/10.1016/j.buildenv.2019.02.016

Marengo J.A. et al., 2019. Increase Risk of Drought in the Semiarid Lands of Northeast Brazil Due to Regional Warming above 4 °C. In: Nobre C., Marengo J., Soares W. (eds) Climate Change Risks in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-92881-4_7

Martens, B., Schumacher, D. L., Wouters, H., Muñoz-Sabater, J., Verhoest, N. E. C., and Miralles, D. G., 2020: Evaluating the land-surface energy partitioning in ERA5, Geosci. Model Dev., 13, 4159–4181, https://doi.org/10.5194/gmd-13-4159-2020.

Masterton, J.M., Richardson, F.A., 1979. HUMIDEX: a method of quantifying human discomfort due to excessive heat and humidity. CLI 1-79. 1–45, Environment Canada, Downside Ontario.

Medeiros, F. J., Oliveira, C. P., C. M. Santos e Silva, Araújo, J. M., 2020. Numerical simulation of the circulation and tropical teleconnection mechanisms of a severe drought event (2012–2016) in Northeastern Brazil, Climate Dynamics, 10.1007/s00382-020-05213-6.

Mistry, M.N., 2020. A High Spatiotemporal Resolution Global Gridded Dataset of Historical Human Discomfort Indices. Atmosphere, 11, 835.

Molion, L.C.B., Bernardo, S.O., 2002. Uma revisão da dinâmica das chuvas no Nordeste Brasileiro. Revista Brasileira de Meteorologia, 17, 1-10.

Moura, Geber B. de A. et al . Relação entre a precipitação do leste do Nordeste do Brasil e a temperatura dos oceanos. Rev. bras. eng. agríc. ambient., Campina Grande , v. 13, n. 4, p. 462-469, Aug. 2009 . Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662009000400014&lng=en&nrm=iso>. access on 13 May 2021. http://dx.doi.org/10.1590/S1415-43662009000400014.

Narisma, G. T., A. J. Pitman, 2003: The Impact of 200 Years of Land Cover Change on the Australian Near-Surface Climate. J. Hydrometeor., 4, 424–436, https://doi.org/10.1175/1525-7541(2003)4<424:TIOYOL>2.0.CO;2.

Pereira, N., Ribeiro, A.L. and D’incao, F., 2011. Influência dos Fenômenos ENOS na Ocorrência de Frentes Frias no Litoral Sul do Brasil. Ciência e Natura, UFSM, 33, 91-99.

Pohlert, T., 2020. trend: Non-Parametric Trend Tests and Change-Point Detection. R package version 1.1.2. https://CRAN.R-project.org/package=trend

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rodrigues, L.R.L., Fedorova, N. and Levit, V., 2010. Adverse Meteorological Phenomena Associated with Low Level Baric Troughs in the Alagoas State, Brazil, in 2003. Atmospheric Science Letters, 11, 204-209. http://dx.doi.org/10.1002/asl.273

Rodrigues, R. R., McPhaden, M. J., 2014. “Why did the 2011–2012 La Niña cause a severe drought in the Brazilian Northeast?,” Geophys. Res. Lett. 41(3), 1012–1018. https://doi.org/10.1002/2013GL058703

Salvador, M.D.A., de Brito, J.I.B., 2018. Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil. Theor Appl Climatol 133, 253–261. https://doi.org/10.1007/s00704-017-2179-5.

Silva, J.S.S., Silva, R.M., Santos, C.A.G., 2018. Spatiotemporal impact of land use/land cover changes on urban heat islands: A case study of Paço do Lumiar, Brazil. Volume 136, Pages 279-292. https://doi.org/10.1016/j.buildenv.2018.03.041

Sisniega, D.P.S., García, M.M., Menéndez, S.F., Soriano, L.R., Dávila, F.B., 2018. Evidence for the influence of land uses and soil types on cloud-to-ground lightning activity in Asturias (Spain). Atmospheric Research. Volume 203, Pages 62-67. https://doi.org/10.1016/j.atmosres.2017.11.025

Sokol, N.J., Rohli, R.V., 2018. Land cover, lightning frequency, and turbulent fluxes over Southern Louisiana. Applied Geography. Volume 90, Pages 1-8. https://doi.org/10.1016/j.apgeog.2017.11.003

Subhashinia, S., Thirumaran, K., 2018. A passive design solution to enhance thermal comfort in an educational building in the warm humid climatic zone of Madurai. Journal of Building Engineering. Volume 18, July 2018, Pages 395-407. https://doi.org/10.1016/j.jobe.2018.04.014

Schwarz, D., Rouphael, Y., Colla, G., Venema, J. H. 2010.Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants,Scientia Horticulturae,Volume 127, Issue 2, Pages 162-171. https://doi.org/10.1016/j.scienta.2010.09.016.

Tarek, M., Brissette, F. P., Arsenault, R., 2020: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020.

Thom, E.C., Bosen, J.F., 1959. The discomfort index. Weatherwise 12, 57–60.

Vitolo, C., Di Giuseppe, F., Barnard, C. et al., 2020. ERA5-based global meteorological wildfire danger maps. Sci Data 7, 216. https://doi.org/10.1038/s41597-020-0554-z

Downloads

Publicado

2021-06-16

Como Citar

Silva, W. T. D. castro, & Segundo, G. H. C. (2021). Spatiotemporal variability of Humidex Index over the Northeast Region of Brazil. Revista Brasileira De Geografia Física, 14(2), 591–606. https://doi.org/10.26848/rbgf.v14.2.p591-606

Edição

Seção

Climatologia e Meteorologia

Artigos Semelhantes

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.