Effects of Spatial Resolution on Topographic Representations and Drainage Networks Derived from LiDAR Digital Terrain Model
DOI:
https://doi.org/10.26848/rbgf.v17.5.p3794-3808Keywords:
Resampling; Computational cost; Digital elevation model.Abstract
Digital Terrain Models (DTM) derived from LiDAR technology are increasingly available. However, working with these DTMs causes high computational costs and requires high-performance equipment, which may even make the use of these models unfeasible. The objective of this work is to evaluate the effects caused by changing spatial resolution in topographic representations and drainage networks extracted from LiDAR-DTM. For this, three resampling techniques were applied, mean aggregation, bilinear interpolation and nearest neighbor interpolation, to coarse a 1 m spatial resolution LiDAR-DTM in multiple resolutions (2, 10, 30 and 100 m). A sub-basin (550 km²) of the Sirinhaem River basin was taken as the case study area. The results show that there was no significant difference between the resampling techniques, but between the spatial resolutions, varying according to the applied metric. The spatial resolution of 2 m is more suitable in case of the need for a coarser resolution.
References
Agência Nacional de Águas e Saneamento Básico – ANA. (2022). Hidroweb: Sistemas de informações hidrológicas. Retrieved in 2022, September 11, from https://www.snirh.gov.br/hidroweb/
Agência Pernambucana de Águas e Clima - APAC. (2020). Atualização do plano estadual de recursos hídricos de Pernambuco – PERH|PE (diagnóstico integrado). Recife. Retrieved in 2022, September 14, from https://www.perhpe.com.br/downloads
Ariza-Villaverde, A. B., Jiménez‐Hornero, F. J., & De Ravé, E. G. (2015). Influence of DEM resolution on drainage network extraction: A multifractal analysis. Geomorphology, 241, 243–254. https://doi.org/10.1016/j.geomorph.2015.03.040
Azizian, A., & Brocca, L. (2019). Determining the best remotely sensed DEM for flood inundation mapping in data sparse regions. International Journal of Remote Sensing, 41(5), 1884–1906. https://doi.org/10.1080/01431161.2019.1677968
Barnes, R., Lehman, C., & Mulla, D. J. (2014). Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models. Computers & Geosciences, 62, 117–127. https://doi.org/10.1016/j.cageo.2013.04.024
Chen, Y., Wilson, J. P., Zhu, Q.; & Zhou, Q., 2012. Comparison of drainage constrained methods for DEM generalization. Computers and Geosciences, 48, 41-49. https://doi.org/10.1016/j.cageo.2012.05.002
Cirilo, J. A., Alves, F. H. B., Silva, B. M., & Campos, P. H. A. L. C. (2015). Pernambuco tridimensional: base de dados espaciais para planejamento urbano e gestão territorial. In 12th Simpósio de Hidráulica e Recursos Hídricos dos Países de Expressão Portuguesa, Brasília. Retrieved in 2022, December 12, from https://anais.abrhidro.org.br/job.php?Job=12751.
Cirilo, J. A., Alves, F. H. B., Da Silva, L. a. C., & De Andrade Lima Campos, J. H. (2014). Suporte de Informações Georreferenciadas de Alta Resolução para Implantação de Infraestrutura e Planejamento Territorial (Support of Georeferenced Information of High Resolution for Implementation of Infrastructure and Territorial Planning). Revista Brasileira De Geografia Física, 7(4), 755–763. https://doi.org/10.26848/rbgf.v7.4.p755-763
Davies, H., & Bell, V. A. (2009). Assessment of methods for extracting low-resolution river networks from high-resolution digital data. Hydrological Sciences Journal, 54(1), 17–28. https://doi.org/10.1623/hysj.54.1.17
Erdbrügger, J., Van Meerveld, I., Bishop, K., & Seibert, J. (2021). Effect of DEM-smoothing and -aggregation on topographically-based flow directions and catchment boundaries. Journal of Hydrology, 602, 126717. https://doi.org/10.1016/j.jhydrol.2021.126717
Ferraz, G. F. (2019). Simulação hidrológica e hidrodinâmica do impacto de enchentes na bacia do rio Sirinhaém e avaliação de sistema de controle proposto. [Master’s thesis, Universidade Federal de Pernambuco]. UFPE Repository. Retrieved in 2022, September 18, from https://repositorio.ufpe.br/handle/123456789/34017
Gillin, C. P., Bailey, S. W., McGuire, K. J., & Prisley, S. P. (2015). Evaluation of Lidar-derived DEMs through Terrain Analysis and Field Comparison. Photogrammetric Engineering and Remote Sensing, 81(5), 387–396. https://doi.org/10.14358/pers.81.5.387.
Gong, J., & Xie, J. (2009). Extraction of drainage networks from large terrain datasets using high throughput computing. Computers & Geosciences, 35(2), 337–346. https://doi.org/10.1016/j.cageo.2008.09.002
Goulden, T., Hopkinson, C., Jamieson, R., & Sterling, S. (2014). Sensitivity of watershed attributes to spatial resolution and interpolation method of LiDAR DEMs in three distinct landscapes. Water Resources Research, 50(3), 1908–1927. https://doi.org/10.1002/2013wr013846.
Grohmann, C. H. (2015). Effects of spatial resolution on slope and aspect derivation for regional-scale analysis. Computers & Geosciences, 77, 111–117. https://doi.org/10.1016/j.cageo.2015.02.003.
Habtezion, N., Nasab, M. T., & Chu, X. (2016). How does DEM resolution affect microtopographic characteristics, hydrologic connectivity, and modelling of hydrologic processes? Hydrological Processes, 30(25), 4870–4892. https://doi.org/10.1002/hyp.10967.
Coz, M. L., Dagognet, F., Genthon, P., & Favreau, G. (2009). Assessment of Digital Elevation Model (DEM) aggregation methods for hydrological modeling: Lake Chad basin, Africa. Computers & Geosciences, 35(8), 1661–1670. https://doi.org/10.1016/j.cageo.2008.07.009.
Lidberg, W., Nilsson, M., Lundmark, T., & Ågren, A. (2017). Evaluating preprocessing methods of digital elevation models for hydrological modelling. Hydrological Processes, 31(26), 4660–4668. https://doi.org/10.1002/hyp.11385.
Lindsay, J. B., & Creed, I. F. (2005). Sensitivity of digital landscapes to artifact depressions in remotely-sensed DEMs. Photogrammetric Engineering and Remote Sensing, 71(9), 1029–1036. https://doi.org/10.14358/pers.71.9.1029.
Lindsay, J. B., Francioni, A., & Cockburn, J. M. H. (2019). LIDAR DEM smoothing and the preservation of drainage features. Remote Sensing, 11(16), 1926. https://doi.org/10.3390/rs11161926.
Lisenby, P. E., & Fryirs, K. (2017). ‘Out with the Old?’ Why coarse spatial datasets are still useful for catchment‐scale investigations of sediment (dis)connectivity. Earth Surface Processes and Landforms, 42(10), 1588–1596. https://doi.org/10.1002/esp.4131.
Meles, M. B.; Younger, S. E.; Jackson, C. R.; Du, E.H.; & Drover, D.T. (2020). Wetness index based on landscape position and topography (WILT): Modifying TWI to reflect landscape position. Journal of Environmental Management, 225, 109863. https://doi.org/10.1016/j.jenvman.2019.109863
Mendonça, R. L.; & Paz, A. R. (2022). LiDAR data for topographical and river drainage characterization: capabilities and shortcomings. Revista Brasileira de Recursos Hídricos, 27. https://doi.org/10.1590/2318-0331.272220220092
Metz, M., Mitášová, H., & Harmon, R. S. (2011). Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search. Hydrology and Earth System Sciences, 15(2), 667–678. https://doi.org/10.5194/hess-15-667-2011.
Muhadi, N. A., Abdullah, A. F., Bejo, S. K., Mahadi, M. R., & Mijic, A. (2020). The Use of LiDAR-Derived DEM in Flood Applications: A review. Remote Sensing, 12(14), 2308. https://doi.org/10.3390/rs12142308.
Muthusamy, M., Casado, M. R., Butler, D., & Leinster, P. (2021). Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. Journal of Hydrology, 596, 126088. https://doi.org/10.1016/j.jhydrol.2021.126088.
O’Callaghan, J., & Mark, D. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing, 28(3), 323–344. https://doi.org/10.1016/s0734-189x(84)80011-0.
Persendt, F., & Gomez, C. (2016). Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs. Geomorphology, 260, 32–50. https://doi.org/10.1016/j.geomorph.2015.06.047.
Polidori, L., & Hage, M. E. (2020). Digital Elevation Model Quality Assessment Methods: A Critical review. Remote Sensing, 12(21), 3522. https://doi.org/10.3390/rs12213522.
Roostaee, M., & Deng, Z. (2022). Effects of digital elevation model data source on HSPF-based watershed-scale flow and water quality simulations. Environmental Science and Pollution Research, 30(11), 31935–31953. https://doi.org/10.1007/s11356-022-24449-9.
Da Silva, R. O. B., Montenegro, S. M. G. L., & De Souza, W. M. (2017). Tendências de mudanças climáticas na precipitação pluviométrica nas bacias hidrográficas do estado de Pernambuco. Engenharia Sanitaria E Ambiental, 22(3), 579–589. https://doi.org/10.1590/s1413-41522017142481.
Śliwiński, D., Konieczna, A., & Roman, K. (2022). Geostatistical resampling of LIDAR-Derived DEM in wide resolution range for modelling in SWAT: A case study of Zgłowiączka River (Poland). Remote Sensing, 14(5), 1281. https://doi.org/10.3390/rs14051281.
Sørensen, R., & Seibert, J. (2007). Effects of DEM resolution on the calculation of topographical indices: TWI and its components. Journal of Hydrology, 347(1–2), 79–89. https://doi.org/10.1016/j.jhydrol.2007.09.001.
De Sousa, T. M. I., & Da Paz, A. R. (2017). How to evaluate the quality of coarse‐resolution DEM‐derived drainage networks. Hydrological Processes, 31(19), 3379–3395. https://doi.org/10.1002/hyp.11262.
Stanislawski, L. V., Survila, K., Wendel, J., Liu, Y., & Buttenfield, B. P. (2017). An open source high-performance solution to extract surface water drainage networks from diverse terrain conditions. Cartography and Geographic Information Science, 45(4), 319–328. https://doi.org/10.1080/15230406.2017.1337524.
Tan, M. L., Ficklin, D. L., Dixon, B. M., Ibrahim, A. L., Yusop, Z., & Chaplot, V. (2015). Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Applied Geography, 63, 357–368. https://doi.org/10.1016/j.apgeog.2015.07.014.
Vaze, J., Teng, J., & Spencer, G. (2010). Impact of DEM accuracy and resolution on topographic indices. Environmental Modelling and Software, 25(10), 1086–1098. https://doi.org/10.1016/j.envsoft.2010.03.014.
Wang, L., & Liu, H. (2006). An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science, 20(2), 193–213. https://doi.org/10.1080/13658810500433453.
Winzeler, H., Owens, P. R., Read, Q. D., Libohova, Z., Ashworth, A. J., & Sauer, T. J. (2022). Topographic Wetness Index as a proxy for soil moisture in a Hillslope catena: Flow algorithms and map Generalization. Land, 11(11), 2018. https://doi.org/10.3390/land11112018.
Woodrow, K., Lindsay, J. B., & Berg, A. (2016). Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction. Journal of Hydrology, 540, 1022–1029. https://doi.org/10.1016/j.jhydrol.2016.07.018.
Wu, S., Li, J., & Huang, G. (2008). A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution. Applied Geography, 28(3), 210–223. https://doi.org/10.1016/j.apgeog.2008.02.006.
Yang, J., & Chu, X. (2013). Effects of DEM resolution on surface depression properties and hydrologic connectivity. Journal of Hydrologic Engineering, 18(9), 1157–1169. https://doi.org/10.1061/(asce)he.1943-5584.0000731.
Yang, P., Ames, D. P., Fonseca, A., Anderson, D., Shrestha, R., Glenn, N. F., & Cao, Y. (2014). What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results? Environmental Modelling and Software, 58, 48–57. https://doi.org/10.1016/j.envsoft.2014.04.005.
Yıldırım, A. A., Watson, D., Tarboton, D. G., & Wallace, R. M. (2015). A virtual tile approach to raster-based calculations of large digital elevation models in a shared-memory system. Computers & Geosciences, 82, 78–88. https://doi.org/10.1016/j.cageo.2015.05.014.
Zhang, K., Gann, D., Ross, M. S., Robertson, Q., Sarmiento, J. P., De Santana, S. A., Rhome, J., & Fritz, C. (2019). Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sensing of Environment, 225, 290–306. https://doi.org/10.1016/j.rse.2019.02.028.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rafael Carneiro, Adriano Rolim da Paz

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Revista Brasileira de Geografia Física agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted to make their work available online before or during the editorial process, on academic social networks, digital repositories, or preprint servers. After publication in Revista Brasileira de Geografia Física, authors are expected to update the preprint or postprint versions on the platforms where they were originally made available, providing a link to the final published version and any other relevant information, with proper recognition of authorship and the initial publication in this journal.
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.