Avaliação multicritério aplicada ao mapeamento a suscetibilidade a escorregamentos: o caso do Bairro Cascata, Porto Alegre, RS (Multicriteria analysis applied to landslide susceptibility mapping: a case study in Cascata District, Porto Alegre, RS )
DOI:
https://doi.org/10.5935/1984-2295.20170048Keywords:
Movimentos de massa. SIG. Suscetibilidade. MCA. AHP.Abstract
O objetivo deste estudo foi mapear, com o emprego de uma técnica de avaliação multicritério em ambiente SIG, a suscetibilidade a escorregamentos no bairro Cascata, Porto Alegre. As variáveis utilizadas foram: declividade, litologia, pedologia, uso do solo e cobertura vegetal. Após a padronização das variáveis, definiu-se a importância de cada uma na predisposição do terreno a escorregamentos com o apoio da técnica de avaliação multicritério AHP (Analytic Hierarchy Process). Os resultados indicam que 3,27% da área de estudo possuí alta suscetibilidade; 83,29% média; 11,98% baixa e 1,46% muito baixa. Verificou-se também que 70,12% da classe alta suscetibilidade já foi urbanizada, configurando-se em áreas prioritárias para a mitigação de riscos. Esse quadro tende a se agravar, uma vez que a expansão urbana é inevitável e contínua, e que à medida que a população cresce, ela modifica o território, potencializando a ocorrência desses desastres. Dessa forma, o mapa resultante constitui-se em subsídio importante para a tomada de decisão, possibilitando uma escolha mais racional na definição de estratégias de prevenção e intervenção do poder público. Isso demonstra que o geoprocessamento aliado a técnicas de avaliação multicritério, simplifica e torna ágil o mapeamento da suscetibilidade.
This study aims to map, with the use of a multi-criteria analysis (MCA) technique in a GIS environment, the landslide susceptibility in the Cascata district, Porto Alegre, Brazil. Variables used were: slope, geology, soil, land use and vegetation cover. After the standardization of these variables, their importance for landslides predisposition was defined with the support of the multi-criteria technique AHP (Analytic Hierarchy Process). Results indicate that 3.27% of the study area has a high susceptibility; 83.29% moderate, 11.89% low and 1.46% very low. It was also found that 70.12% of the high susceptibility class has already been urbanized, and therefore, should be considered as priority for risk mitigation. This situation tends to worsen since urban sprawl is inevitable and continuous, and as the populations grow, it changes the territory, enhancing the occurrence of these disasters. Thus, the resulting map is an important tool for decision making, enabling a more rational definition of public strategies for landslides prevention and intervention. This demonstrates that GIS combined with MCA techniques simplifies and makes the susceptibility mapping faster.
Keywords: landslides, GIS, susceptibility, MCA, AHP.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Mariana Madruga de Brito, Eliseu Weber, Alexandra Passuello

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Revista Brasileira de Geografia Física agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted to make their work available online before or during the editorial process, on academic social networks, digital repositories, or preprint servers. After publication in Revista Brasileira de Geografia Física, authors are expected to update the preprint or postprint versions on the platforms where they were originally made available, providing a link to the final published version and any other relevant information, with proper recognition of authorship and the initial publication in this journal.
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.