Impacto, em curto prazo, dos antibióticos amoxicilina e doxiciclina na qualidade microbiana de um Latossolo Vermelho-amarelo (Short-term impact of the antibiotics amoxicillin and doxycycline on the microbial quality of a Red-yellow Latosol)

Luiz Gustavo Paulon Rezende, Márcia Matiko Kondo, Rogério Melloni

Resumo


Concentrações residuais de antibióticos de uso compartilhado pela terapia médica humana e veterinária são cada vez mais frequentes nos mais variados tipos de matrizes ambientais; no entanto, pouco se sabe sobre o impacto que esses fármacos podem acarretar aos microrganismos do solo. Sendo assim, perturbações relacionadas à exposição da microbiota de um latossolo vermelho-amarelo brasileiro a dois antibacterianos, a amoxicilina (AMOX) e a doxiciclina (DOX), foram investigadas por meio da determinação de atividade (mg CO2) e biomassa (Cmic) microbianas, juntamente com o quociente metabólico (qCO2), em amostras de solo que receberam as seguintes concentrações desses compostos: 0,03, 0,3, 3,0, 30 e 300 mg L-1. Os resultados mostraram diferentes efeitos sobre a microbiota e de forma específica para cada antibiótico. A AMOX mostrou-se mais impactante para os microrganismos do solo, com redução da biomassa e aumento do qCO2, enquanto que a DOX reduziu a atividade microbiana, mas sem efeito na biomassa e qCO2.




A B S T R A C T

The residual concentrations of antibiotics used by human and veterinary medical therapy are increasingly common in a wide range of environmental matrices, nevertheless little is known about the impact of these drugs on to the soil microorganisms. Therefore, disturbances related to the exposure of the microbiota of a Brazilian Red-yellow Latosol to two antibacterials, amoxicillin (AMOX) and doxycycline (DOX), were investigated through the determination of the microbial activity (mg CO2) and biomass (Cmic), among with the metabolic quotient (qCO2), using soil samples spiked with: 0,03, 0,3, 3,0, 30 and 300 mg L-1 of each drug. The results showed different effects on the microbiota and in a specific way for each antibiotic. The AMOX showed higher impact impacting for the soil microorganisms, with reduction of the biomass and increase of the qCO2, whereas the DOX reduced the microbial activity, but showed no effect in the biomass and qCO2.

Keywords: Antibiotics. Amoxicillin. Doxycycline. Bioindicators. Latosols.



Palavras-chave


Antibióticos, Amoxicilina, Doxiciclina, Bioindicadores, Latossolos.

Texto completo:

PDF

Referências


Abbas, Z. et al., 2014. Effect of buctril super (Bromoxynil) herbicide on soil microbial biomass and bacterial population. Brazilian Archives of Biology and Technology 1, 9-14.

ANVISA. Agência Nacional de Vigilância Sanitária, 2018. Resolução - RDC Nº 20, de 05/05/2011. Disponível em: . Acesso em: 18 jun. 2018.

Araújo, G. B. et al., 2015. Detecção de resíduo de antibiótico em leite in natura em laticínio sob inspeção federal. Scientia Plena 11, 1-6.

Bastida, F. et al., 2008. Past, present and future of soil quality indices: a biological perspective. Geoderma 147, 159-171.

Belmonte, S. A. et al., 2018. Effect of Long-Term Soil Management on the Mutual Interaction Among Soil Organic Matter, Microbial Activity and Aggregate Stability in a Vineyard. Pedosphere 28, 288-298.

Binh, C. T. T. et al., 2007. Short-term effects of amoxicillin on bacterial communities in manured soil. FEMS Microbiology Ecology 62, 290-302.

Braschi, I. et al., 2013. Persistence and degradation of new β-lactam antibiotics in the soil and water environment. Chemosphere 93, 152-159.

Bu, Q. et al., 2016. Assessing the persistence of pharmaceuticals in the aquatic environment: Challenges and needs. Emerging Contaminants 2, 145-147.

Carvalho, I. T.; Santos, L., 2016. Antibiotics in the aquatic environments: a review of the European scenario. Environment International 94, 736-757.

Caselani, K., 2014. Resíduos de medicamentos veterinários em alimentos de origem animal. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR 17, 187-195.

Cetecioglu, Z. et al., 2015. Acute effect of erythromycin on metabolic transformations of volatile fatty acid mixture under anaerobic conditions. Chemosphere 124, 129-135.

Chowdhury, A. et al., 2008. Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian Journal of Microbiology 48, 114-127.

Christian, T. et al., 2003. Determination of antibiotic residues in manure, soil, and surface waters. Acta hydrochimica et hydrobiologica 31, 36-44.

Cui, H. et al., 2014. Influence of ciprofloxacin on microbial community structure and function in soils. Biology and Fertility of Soils 50, 939-947.

Das, P.; Pal, R.; Chowdhury, A., 2007. Effect of novaluron on microbial biomass, respiration, and fluorescein diacetate-hydrolyzing activity in tropical soils. Biology and Fertility of Soils 44, 387-391.

De Franco, M. A. E. et al., 2017. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. Journal of Cleaner Production 161, 947-956.

De-Polli, H.; Guerra, J. G. M., 1996. Biomassa microbiana: perspectivas para o uso e manejo do solo. In: Alvarez V. H. V.; Fontes, L. E. F.; Fontes, M. P. (eds.) O solo nos grandes domínios morfoclimáticos do Brasil. Viçosa: Sociedade Brasileira de Ciência do Solo 552-564.

Dinh, Q. T. et al., 2017. Occurrence of antibiotics in rural catchments. Chemosphere 168, 483-490.

EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária, 2006. Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos. 2. Ed. Rio de Janeiro: Embrapa Solos.

Ferreira, A. S.; Camargo, F. A. O.; Vidor, C., 1999. Utilização de microondas na avaliação da biomassa microbiana do solo. Revista Brasileira de Ciência do Solo 23, 991-996.

Gao, M. et al., 2013. Interactive effect of oxytetracycline and lead on soil enzymatic activity and microbial biomass. Environmental Toxicology and Pharmacology 36, 667-674.

Gavrilescu, M. et al., 2015. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology 32, 147-156.

Gomez, E. et al., 2009. Impact of glyphosate application on microbial biomass and metabolic activity in a Vertic Argiudoll from Argentina. European Journal of Soil Biology 45, 163-167.

Gonzalez-Martinez, A. et al., 2018. Linking the Effect of Antibiotics on Partial-Nitritation Biofilters: Performance, Microbial Communities and Microbial Activities. Frontiers in Microbiology 9, 1-16.

Grenni, P.; Ancona, V.; Caracciolo, A. B., 2017. Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal 136, 25-39.

Guo, H. et al., 2012. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere 87, 1273-1280.

Hammer, Ø.; Harper, D. A. T.; Ryan, P. D., 2001. Paleontological statistics software: package for education and data analysis. Palaeontologia Electronica 4, 19-20.

Imfeld, G.; Vuilleumier, S., 2012. Measuring the effects of pesticides on bacterial communities in soil: a critical review. European Journal of Soil Biology 49, 22-30.

Kim, Y. K. et al., 2012. Sorption characteristics of oxytetracycline, amoxicillin, and sulfathiazole in two different soil types. Geoderma 185-186, 97-101.

Kotzerke, A. et al., 2011. Alterations in total microbial activity and nitrification rates in soil due to amoxicillin‐spiked pig manure. Journal of Plant Nutrition and Soil Science 174, 56-64.

Kuppusamy, S. et al., 2018. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agriculture, Ecosystems & Environment 257, 47-59.

Liao, M. et al., 2010. Different influences of cadmium on soil microbial activity and structure with Chinese cabbage cultivated and non-cultivated. Journal of Soils and Sediments 10, 818-826.

Lin, H. et al., 2016. A compositional shift in the soil microbiome induced by tetracycline, sulfamonomethoxine and ciprofloxacin entering a plant-soil system. Environmental Pollution 212, 440-448.

Liu, A. et al., 2016. Combinational effects of sulfomethoxazole and copper on soil microbial community and function. Environmental Science and Pollution Research 23, 4235-4241.

Liu, B. et al., 2014. Combined effects of chlortetracycline and dissolved organic matter extracted from pig manure on the functional diversity of soil microbial community. Soil Biology and Biochemistry 74, 148-155.

Liu, F. et al., 2012. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Applied Microbiology and Biotechnology 95, 1615-1623.

Lv, T. et al., 2017. Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering 98, 378-387.

Ma, J. et al., 2014. Soil microbial systems respond differentially to tetracycline, sulfamonomethoxine, and ciprofloxacin entering soil under pot experimental conditions alone and in combination. Environmental Science and Pollution Research 21, 7436-7448.

Ma, T. et al., 2016. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. European Journal of Soil Biology 76, 53-60.

Mah, T-F., 2012. Biofilm-specific antibiotic resistance. Future Microbiology 7, 1061-1072.

MAPA. Ministério da Agricultura, Pecuária e Abastecimento, 2018. Exportações do Agro em maio alcançaram 9,97 bilhões. Disponível em: http://www.agricultura.gov.br/noticias/exportacoes-do-agro-em-maio-alcancaram-us 9 97-bilhoes. Acesso em: 18 jun. 2018.

Molaei, A. et al., 2017. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PloS One 12, e0180663.

Montagner, C. C.; Vidal, C.; Acayaba, R. D., 2017. Contaminantes emergentes em matrizes aquáticas do Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Química Nova 40, 1094-1110.

Muhlbachova, G. et al., 2015. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site. Science of the Total Environment 502, 218-223.

Mukherjee, S. et al., 2016. Persistence of the herbicides florasulam and halauxifen-methyl in alluvial and saline alluvial soils, and their effects on microbial indicators of soil quality. European Journal of Soil Biology 73, 93-99.

Nascimento, V. A.; Batista Filho, M.; Dias, M., 2016. Evolução do efetivo de bovinos no Brasil, estado de Goiás e município de Jataí (GO). Enciclopédia Biosfera, Centro Científico Conhecer 13, 610-624.

Oliveira Neto, O. F.; Arenas, A. Y.; Fostier, A. H., 2017. Sorption of thiabendazole in sub-tropical Brazilian soils. Environmental Science and Pollution Research 24, 16503-16512.

Pacheco-Silva, E.; Souza, J. R.; Caldas, E. D., 2014. Resíduos de medicamentos veterinários em leite e ovos. Química Nova 37, 111-122.

Peixoto, F. B. S. et al., 2017. Petroleum biodegrading and co-resistance to antibiotics by Serratia marcescens strain isolated in Coari, Amazonas. Acta Scientiarum. Biological Sciences 39, 489-496.

Peña, W. et al., 2007. Modification of the degradative capacity of a soil artificially contaminated with diesel. Chemosphere 67, 1057-1063.

Perovano Filho, N.; Da Silva, K. F. S.; López, A. M. Q., 2011. Ação de Micoflora de efluentes agroindustriais sobre diferentes corantes e substratos lignocelulósicos. Acta Scientiarum. Biological Sciences 33, 427-435.

Portilho, I. I. R. et al., 2015. Persistência de inseticidas e parâmetros microbiológicos em solo sob sistemas de manejo. Ciência Rural 45, 22-28.

Puckowski, A. et al., 2016. Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. Journal of Pharmaceutical and Biomedical Analysis 127, 232-255.

Qin, J. et al., 2018. Effects of different fertilizers on residues of oxytetracycline and microbial activity in soil. Environmental Science and Pollution Research 11/2018, 1-10.

Quadro, M. S. et al., 2011. Biomassa e atividade microbiana em solo acrescido de dejeto suíno. Current Agricultural Science and Technology 17, 85-93.

Rath, S.; Schroder, C. H. K.; Rodrigues-Silva, C.; Ferreira, F. D. O.; Dionizio, A. C.; Dal Bosco, S. M., 2016. Avermectinas no agronegócio brasileiro: uma solução ou um problema? Veterinária e Zootecnia 23, 8-24.

Regitano, J. B.; Leal, R. M. P., 2015. Dinâmica de antibióticos e hormônios no Solo. In: Nascimento, C. W. A. et al. (eds.) Tópicos em Ciência do Solo. V. 9. Viçosa: SBCS 48-91.

Reichel, R. et al., 2013. Effects of slurry from sulfadiazine-(SDZ) and difloxacin-(DIF) medicated pigs on the structural diversity of microorganisms in bulk and rhizosphere soil. Soil Biology and Biochemistry 62, 82-91.

Reichel, R. et al., 2014. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes. Applied Microbiology and Biotechnology 98, 6487-6495.

Reis, M. R. et al., 2008. Atividade microbiana em solo cultivado com cana-de-açúcar após aplicação de herbicidas. Planta Daninha 26, 323-331.

Rezende, L. G. P., 2019. Comportamento físico-químico e biológico de antibióticos em um latossolo vermelho-amarelo da região sul do Estado de Minas Gerais. 2019. 147 f. Dissertação (Mestrado em Meio Ambiente e Recursos Hídricos) – Universidade Federal de Itajubá, Itajubá.

Rivera-Utrilla, J. et al., 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93, 1268-1287.

Sam, A. T.; Asuming-Brempong, S.; Nartey, E. K., 2017. Microbial activity and metabolic quotient of microbes in soils amended with biochar and contaminated with atrazine and paraquat. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science 67, 492-509.

Shapiro, S. S; Wilk, M. B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591-611.

Shore, R. F. et al., 2014. Detection and drivers of exposure and effects of pharmaceuticals in higher vertebrates. Philosophical Transactions of the Royal Society B: Biological Sciences 369, 20130570.

SINDAN. Sindicato Nacional da Indústria de Produtos para Saúde Animal, 2018a. Anuário 2018. Disponível em: . Acesso em: 29 dez. 2018.

SINDAN. Sindicato Nacional da Indústria de Produtos para Saúde Animal, 2018b. Distribuição do faturamento por classe farmacêutica. Disponível em . Acesso em: 29 dez. 2018.

Souza, C. P. F. A.; Falqueto, E., 2015. Descarte de medicamentos no meio ambiente no Brasil. Revista Brasileira de Farmácia 96, 1142-1158.

Souza, M. I. A.; Lage, M. E.; Prado, C. S., 2013. Resíduos de antibióticos em carne bovina. Enciclopédia Biosfera, Centro Científico Conhecer 9, 1917-1938.

Stotzky, G. Microbial respiration, 1965. In: Black, C. A., ed. Methods of Soil Analysis. Part 2. Madison: American Society of Agronomy 1550-1572.

Thiele-Bruhn, S.; Beck, I-C., 2005. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59, 457-465.

Tironi, S. P. et al., 2009. Efeito de herbicidas na atividade microbiana do solo. Planta Daninha 27, 995-1004.

Vasquez, M. I. et al., 2014. Environmental side effects of pharmaceutical cocktails: what we know and what we should know. Journal of Hazardous Materials 279, 169-189.

Waiser, M. J. et al., 2016. Effects of erythromycin, trimethoprim and clindamycin on attached microbial communities from an effluent dominated prairie stream. Ecotoxicology and Environmental Safety 132, 31-39.

Wang, J. et al., 2018a. Individual and combined effects of enrofloxacin and cadmium on soil microbial biomass and the ammonia-oxidizing functional gene. Science of The Total Environment 624, 900-907.

Wang, L. et al., 2018b. Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses. Environmental Geochemistry and Health 40, 763-776.

Willing, B. P.; Russell, S. L.; Finlay, B. B., 2011. Shifting the balance: antibiotic effects on host–microbiota mutualism. Nature Reviews Microbiology 9, 233.

Xu, Y. et al., 2016. The combined effect of sulfadiazine and copper on soil microbial activity and community structure. Ecotoxicology and Environmental Safety 134, 43-52.

Zhang, C. et al., 2010. The effect of imazethapyr on soil microbes in soybean fields in northeast China. Chemistry and Ecology 26, 173-182.

Zhang, X. et al., 2013. The variations in the soil enzyme activity, protein expression, microbial biomass, and community structure of soil contaminated by heavy metals. ISRN Soil Science, 2013, 1-12.




DOI: https://doi.org/10.26848/rbgf.v12.4.p1340-1354

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License