Análise da eficiência dos métodos indiretos para o mapeamento de solos frente às técnicas diretas, e suas possíveis associações: Uma revisão metodológica.

José Gustavo da Silva Nunes, Rogério Uagoda

Resumo


Este artigo se trata de uma revisão metodológica de técnicas indiretas de mapeamento pedológico, envolvendo ensaios granulométricos, SIG e sensoriamento remoto dentro do mapeamento digital de solos, espectrorradiometria e Georadar (GPR), comparados e/ou associados às técnicas diretas como coleta, descrição de trincheiras ou perfis, análise da paisagem. O mapeamento digital de solos (MDS) vem se provando com uma ferramenta eficiente desde o início do ano 2000, associadas a outros métodos como o sensoriamento remoto e análises laboratoriais, o MDS forneceu ao mundo mapas que representam bem a realidade dos solos. Mas as técnicas diretas ainda são usuais e eficientes, e podem ser associadas aos métodos indiretos, para que o mapeamento de uma pequena área possa ser espalhado regionalmente. A busca por técnicas de baixo custo, eficiência e praticidade tem levado pesquisadores a buscarem técnicas como o Georradar para verificar a profundidade do solo, sem que seja necessário a destruição de perfis por meio da abertura de trincheiras, como também ao uso de imagens de radar capaz de oferecer um produto de alta resolução espacial, independentemente da altitude da plataforma, e que tem auxiliado na extração de diversas informações da paisagem diretamente ligadas à pedogênese. Esta pesquisa tem o intuito de buscar a evolução do mapeamento pedológico através das diversas técnicas citadas, e bem como a associação entre os diversos métodos para gerar um mapa de solos de alta precisão.

 

Efficiency analysis of indirect methods for soil mapping against direct techniques, and their possible associations: A methodological review

A B S T R A C T

This article is a methodological review of indirect techniques of pedological mapping, GIS and remote sensing within digital soil mapping, spectroradiometry and Georadar (GPR), compared to landscape analysis. Research has shown that digital soil mapping (MDS) has been an efficient tool since the beginning of the year 2000, combined with other methods such as remote sensing and laboratory analysis, MDS has provided the world with maps that represent the reality of soils well. But direct techniques are still common and efficient, and can be associated with indirect methods, so that local mapping information can be dispersed regionally. The search for low-cost, efficient and practical techniques has led researchers to look for techniques such as Georadar to check the depth of the soil, without the need to destroy profiles by opening trenches, as well as using radar images. which provide a high spatial resolution product, regardless of the platform's altitude, and which has helped in the extraction of various landscape information directly linked to pedogenesis. Spectroradiometry is a methodology that works with the measurement of radiant electromagnetic energy, and allows for quick associations between targets and spectral curves, allowing the creation of global libraries of these curves. Radiometry in turn has been widely used in systems that operate in the microwave frequency range, ranging from 1mm to 1m in length, and allow you to locate objects. This research aims to seek the evolution of pedological mapping through the various techniques mentioned, as well as the association between the various methods to generate a highly accurate soil map.

Keywords: Soil Mapping; GPR; Spectroradiometry; Orbital Sensors


Palavras-chave


Geossistemas; Solos

Texto completo:

PDF

Referências


ARDEKANI, M. R. Off- and on-ground GPR techniques for field-scale soil moisture mapping. Geoderma 200–201, 55–66. https://doi.org/10.1016/j.geoderma.2013.02. 010.

ARROUAYS, D.; LAGACHERIE, P.; HARTEMINK, A. E. Digital soil mapping across the globe. Geoderma Regional, v. 9, p. 1–4, 2017.

BAER, C.; GUTIERREZ, S.; JEBRAMCIK, J.; BAROWSKI, J.; VEGA, F.; ROLFES, I. Ground penetrating synthetic aperture radar imaging providing soil permittivity estimation. IEEE MTT-S International Microwave Symposium Digest, p. 1367–1370, 2017.

BALLABIO, C.; PANAGOS, P.; LUGATO, E.; HUANG, J.H.; ORGIAZZI, A.; JONES, A.; FERNANDEZ-UGALDE, O.; BORRELLI, P.; MONTANARELLA, L.; Copper distribution in European topsoils: an assessment based on LUCAS soil survey. Sci. Total Environ. 636, 282–298. 2018.

BEN-DOR, E.; BANIN, A.. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J., 59:364-372, 1995.

BISWAS, A.; ZHANG, Y. Sampling Designs for Validating Digital Soil Maps: A Review. Pedosphere, v. 28, n. 1, p. 1–15, 2018.

BORECKA, A.; HERZIG, J.; DURJASZ-RYBACKA, M.. Ground Penetrating Radar Investigations of Landslides: A Case Study in a Landslide in Radziszów. Studia Geotechnica et Mechanica, v. 37, n. 3, p. 11-18 2015. DOI: 10.1515/sgem- 2015-0028.

BRODSKÝ, L.; KLEMENT A.; PENÍŽEK V.; KODEŠOVÁ R.; BORUVKA L.. Building soil spectral library of the czech soils for quantitative digital soil mapping. Soil and Water Research, v. 6, n. 4, p. 165–172, 2011.

BROWN D.J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma, 140: 444–453. 2007.

Brown, D.J.; Shepherd, K.D.; Walsh, M.G.; Mays, M.D. & Reinsch, T.G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132:273-290, 2006.

CATHCART, J. M.; CAMPBELL R.; GREENWOOD S.; BOCK R. D.; MAURO B. Impact of soil and environmental processes on hyperspectral infrared signatures. Detection and Remediation Technologies for Mines and Minelike Targets IX, v. 5415, p. 638, 2004.

CATEN, A. TEN; DALMOLIN R. S. D.; MENDONÇA-SANTOS M DE L, GIASSON E. Mapeamento digital de classes de solos : características da abordagem brasileira. Ciência Rural. Santa Maria, v.42, n.11, nov, 2012. Pág:1989–1997.

CEZAR, E.; NANNI, M.R.; CHICAT, M. L.; SOUZA JÚNIOR, I.G.; COSTA, A.C.S. Avaliação e quantificação das frações silte, areia e argila por meio de suas respectivas reflectâncias. Revista Brasileira de Ciência do Solo, 36:1157-1165, 2012.

CEZAR, E.; NANNI, M.; DEMATTÊ, J.; CHICATI, M.; BERTI, R. Estimativa de atributos do solo por meio de espectrorradiometria difusa. Revista Brasileira de Ciência do Solo. 37 (4): 858-868, 2013. [Fecha de consulta: 16 de junho de 2019]. Disponível em: http://www.redalyc.org/articulo.oa?id=180228128004

CHANG, C.; LAIRD, D.A.; MAUSBACH, M.J. & HURBURGH JUNIOR, C.R. Near-infrared reflectance spectroscopy - principal components regression analyses of soil properties. Soil Sci. Soc. Am. J., 65:480-490, 2001.

CHANZY A.; TARUSSOV A.; JUDGE A.; BONN F.; Soil water content determination using a digital ground-penetrating radar, Soil Sci. Soc. Am. J. 60 (1996) 1318–1326.

COLEMAN, T.L. & MONTGOMERY, O.L. Soil moisture, organic matter and iron content effect on the espectral characteristics of selected Vertisols and Alfisols in Alabama. Photogr. Eng. Remote Sens., 53:1659-1663, 1987

COLEMAN, T.L.; AGBU, P.A.; MONTGOMERY, O.L.; GAO, T. & PRASAD, S. Spectral band selection for quantifying selected properties in highly weathered soils. Soil Sci., 151:355-361, 1991.

DALAL, R.C.; HENRY, R.J. Simultaneous determination of measure, organic carbon, and total nitrogen by near infrared spectrophotometry. Soil Sci. Soc. Am. J., 50:120- 123, 1986.

DANIEL, K.W.; TRIPATHI, N.K. & HONDA, K. Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients. In: Soils of Lop Buri (Thailand). Aust. J. Soil Res, 41:47-59, 2003.

DE BENEDETTO, D.; CASTRIGNANÒ, A.; SOLLITTO, D.; MODUGNO, F. Spatial relationship between clay content and geophysical data. Clay Minerals 45 (2) 197-207. 2010.

DEMATTÊ, J.A.M.; GARCIA, G.J. Alteration of soil properties through a weathering sequence as evaluated by spectral reflectance. Soil Sci. Soc. Am. J., 63:327-342, 1999.

DEMATTÊ, J.A.M. Characterization and discrimination of soils by their reflected electromagnetic energy. Pesq. Agropec. Bras., 37:1445-1458, 2002.

DEMATTÊ, J. A. M., DOTTO, A. C., PAIVA, A. F. S., SATO, M. V., DALMOLIN, R. S. D., DE ARAÚJO, M. DO S. B; ELISÂNGELA B. DA SILVA; NANNI, M. R.; CATEN, A. TEN; NORONHA, N. C.; LACERDA, M. P. C.; JOSÉ COELHO DE ARAÚJO FILHO; RODNEI RIZZO; BELLINASO H.; FRANCELINO, M. R.; SCHAEFER, C. E. G. R.; LUIZ E. VICENTE; UEMESON J. DOS SANTOS; SAMPAIO, E. V. S. B.; MENEZES, R. S. C.; SOUZA, J. J. L. L. DE; ABRAHÃO, W. A. P.; COELHO, R. M.; GREGO, C. R.; LANI, J. L.; FERNANDES, A. R.; GONÇALVES, D. A. M.; SILVA, S. H. G.; MENEZES, M. D. DE; CURI, N.; COUTO, E. G.; ANJOS, L. H. C.; CEDDIA, M. B.; PINHEIRO, É. F. M.; GRUNWALD S.; VASQUES, G. M.; MARQUES. J. J.; SILVA, A. J. DA; BARRETO, M. C. V.; NÓBREGA, G. N.; SOUZA, M. Z. DA SILVA; SARA F. DE; VALLADARES, G. S.; VIANA, J. H. M.; TERRA, F. S.; HORÁK-TERRA, I.; FIORIO, P. R.; SILVA, R. C.; FRADE, E. F. JÚNIOR; LIMA R. H. C.; ALBA, J. M. F.; SOUZA, V. S. DE JUNIOR; BREFI, L. M. S.; RUIVO M. L. P.; FERREIRA, T. O.; BRAIT, M. A.; CAETANO, N. R.; BRINGHENTI I.; MENDES, W. S.; SAFANELLI, J. L.; GUIMARÃES, C. C. B.; POPPIEL, R. R.; SOUZA, A. B.; QUESADA, C. A.; COUTO, H. T. Z. The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. Geoderma, v. 354, n. August, p. 113793, 2019.

EPIPHANIO, J. C. N. Efeito do ângulo de observação e da rugosidade superficial no comportamento espectral de solos sob condições hídricas temporalmente variáveis. São Jose dos Campos: INPE, 1983. 52 p.

Epiphanio, J.C.N.; Formaggio, A.R.; Valeriano, M.M.; Oliveira, J.B. Comportamento espectral de solos do Estado de São Paulo. São José dos Campos: INPE, 1992. 131p. (INPE-5424-PRP-172).

FORMAGGIO, A.R.; EPIPHANIO, J.C.N.; VALERIANO, M.M.; OLIVEIRA, J.B. Comportamento espectral (450-2.450 nm) de solos tropicais de São Paulo. Revista Brasileira de Ciência do Solo, v.20, p.467-474, 1996.

FRUNEAU B.; ACHACHE, J.; DELACOURT, C. “Observation and modeling of the SaintEtienne-de-Tinee landslide using SAR interferometry”. Tectophysics 265, pp. 181– 190. 1996.

GLEICH, D. Detection of wet zones within a hydro-power plant’s canal using SAR and GPR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 6, n. 4, p. 1864–1878, 2013.

GONZALEZ-VALDES, B.; MARTINEZ-LORENZO, J. A.; RAPPAPORT, C. M. Dual band SAR processing for low dielectric contrast buried IED detection. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), p. 1080–1081, 2013.

GOOSEN, D. Interpretación de fotos aéreas y su importancia em levantamiento de suelos. Rome: Organización Naciones Unidas y para la Agricultura y la Alimentación. 1968. 56p. Boletín sobre Suelos, 6

GRIFFITH, G.; GOKA T. in: Safety Design for Space Systems, - The Space Environment: Natural and Induced Capítulo 2. Theoretical Foundation and Basic Properties of Thermal Radiation. P. 7-104. 2009.

HARRISON, L.; MICHALSKY, J.; BERNDT, J.. “Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements,” Appl. Opt. 33(22), 5118–5125 (1994).

HENDERSON, F. M.; LEWIS, A. J. Principles and Applications of Imaging Radar. Manual of Remote Sensing, Nova Iorque: John Wiley & Sons, 3a ed., v. 2, 866 p., 1998.

IGARASHI, T. ALOS mission requirements and specifications. Advances in Space Research, v. 28, n. 1, p. 127-131, 2001.

ISLAM, K.; SINGH, B.; SCHWENKE, G.; MCBRATNEY, A. Evaluation of vertosol soil fertility using ultra-violet, visible and near-infrared reflectance spectroscopy. In: SUPERSOIL, 3. 2004, Sydney. Proceedings... Sydney, University of Sydney, 2004.

JENSEN, J. R. Sensoriamento Remoto do Ambiente. Uma Perspectiva em Recursos Terrestres. Tradução: José Carlos Neves Epiphânio et al. São José dos Campos: Parentese, 585 p., 2009.

JOL, H.; BRISTOW, C.; GPR in sediments: Advice on data collection, basic processing and interpretation, a good practice guide. Geological Society Special Publication, 2003. 211 pp. 9-27. 10.1144/GSL.SP.2001.211.01.02.

KINGSLEY, S.; QUEGAN, S. Understanding Radar Systems, SciTech Publishing, Raleigh, NC, 1999.

LAGACHERIE, P.; MCBRATNEY, A.B.; VOLTZ, M.. Spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping. In: LAGACHERIE, P. et al. (Ed.). Digital soil mapping: an introductory perspective. Amsterdam: Elsevier, 2007. p.3-24.

LAMBOT, S., SLOB, E., CHAVARRO, D., LUBCZYNSKI, M., VEREECKEN, H. Measuring soil surface water content in irrigated areas of southern Tunisia using full-waveform inversion of proximal GPR data. NEAR Surf. Geophys. 6, 403–410. 2008

LIMA, S. F. S. Iniciação em sensoriamento remoto. Educar em Revista, n. 40, p. 225–227, 2011.

MCBRATNEY, A.B., MENDONÇA SANTOS, MDL, MINASNY, B., 2003. On digital soil mapping. Geoderma 117 (1–2), 3–52.

MENESES, P.R. & MADEIRA NETTO, J.S., orgs. Sensoriamento remoto: Reflectância dos alvos naturais. Brasília, UnB/Embrapa Cerrados, 2001. 262p.

MINASNY, B.; MCBRATNEY, A. B. Digital soil mapping: A brief history and some lessons. Geoderma, v. 264, p. 301–311, 2016.

MINET, J., WAHYUDI, A., BOGAERT, P., VANCLOOSTER, M., LAMBOT, S. Mapping shallow soil moisture profiles at the field scale using full-waveform inversion of ground penetrating radar data. Geoderma 161, 225–237. https://doi.org/10.1016/j.geoderma. 2010.12.023.

MINET, J., BOGAERT, P., VANCLOOSTER, M., LAMBOT, S. Validation of ground penetrating radar full-waveform inversion for field scale soil moisture mapping. J. Hydrol. 424–425, 112–123. https://doi.org/10.1016/j.jhydrol.2011.12.034.

NANNI, M.R. & DEMATTÊ, J.A.M. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci. Soc. Am. J., 70:393-407, 2006.

NAZLI, H.; SEZGIN, M. Effects of different soil types on strip-map GPR SAR images. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVI, v. 8017, p. 80170Y, 2011.

NEAL, A. Ground Penetrating Radar and Its Use in Sedimentology: Principle, Problem and Progress. Earth Science Reviews, v. 66, p. 261-330. (2004) Doi: 10.1016/j. earscirev.2004.01.004.

PRICE, J. C. How unique are spectral signatures? Remote Sensing of Environment, v. 49, n. 3, p. 181–186, 1994.

RAMOS D.P. Desafios da Pedologia Brasileira frente ao novo milênio - (CNPS/EMBRAPA). In: Simpósio do XXIX Congresso Brasileiro de Ciência do Solo, Ribeirão Preto, SP, 2003. Anais. Viçosa: Sociedade Brasileira de Ciência do Solo,- 2003. 9p.

ROYLE J A, NYCHKA D. An algorithm for the construction of spatial coverage designs with implementation in SPLUS. Comput Geosci. V. 24, p. 479–488. 1998.

SANCHEZ, P. A.; AHAMED, S.; CARRÉ, F.; HARTEMINK, A. E.; HEMPE, J.; HUISING J.; LAGACHERIE P.; MCBRATNEY A. B.; MCKENZIE N. J.; SANTOS M. L. M.; MINASNY B.; MONTANARELLA L.; OKOTH P.; PALM C. A.; SACHS J. D.; SHEPHERD K. D.; VÅGEN T. G.; VANLAUWE B.; WALSH M. G.; WINOWIECKI L. A.; ZHANG G. L.. “Digital soil map of the world”. Science 325(5941):680–81. 2009

SCHNEIDER, W.; YOUNG, R. Spectroradiometry methods Application note (A14). Optronic Laboratories, Inc., n. 407, p. 47, 1998

SHEPHERD, K.D.; WALSH, M.G. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J., 66:988-998, 2002.

SHIMADA, M.; ISOGUCHI, O.; TADONO, T.; ISONO, K. Palsar Radiometric and Geometric Calibration. IEEE Transactions on Geoscience and Remote Sensing, 47 (2009): 3915-3932.

Selige T., Bohner J, Schmidhalter U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma, 136: 235–244. 2006.

SILVA, B. A.; MARTINS V. M.; HAYAWAKA E. H.; MACEDO R. S. Mapeamento Digital De Solos E Os Atributos Topográficos Das Vertentes No Alto Curso Da Sub-Bacia Hidrográfica Do Córrego Quatro Pontes, Pr–Brasil. Revista Brasileira de Geomorfologia, v. 19, n. 4, 2018.

SLATER, L.; COMAS, X. The contribution of ground penetrating radar to water resource research. In: Jol, H.M. (Ed.), Ground Penetrating Radar: Theory and Applications. Elsevier, Amsterdam, pp. 203–246. 2009.

SMITH, G. S. Directive properties of antennas for transmission into a material half-space. IEEE Transactions on Antennas and Propagation (ISSN 0018-926X), vol. AP-32, March 1984, p. 232-246.

STONER, E.R.; BAUMGARDNER, M.F. Characteristic variations in reflectance of surface soils. Soil Science Society of America. Journal, Madison, v.45, p.1161-1165, 1981.

STENBERG, B.; JONSSON, A.; BORJESSON, T. Near infrared technology for soil analysis with implications for precision agriculture. In: NEAR INFRARED SPECTROSCOPY: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE, Chichester, 2002. Anais…Chichester, NIR Publications, 2002. p.279-284.

STENBERG, B.; VISCARRA ROSSEL, R.A.; MOUAZEN, A.M.; WETTERLIND, J. Visible and near infrared spectroscopy. In: Soil Science. Adv. Agron., 107:164-206, 2010.

TAGHIZADEH-MEHRJARDI, R.; NABIOLLAHI, K.; KERRY, R. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, v. 266, p. 98–110, 2016.

ULABY, F.T.; MOORE, R.K. & FUNG, A.K. Microwave remote sensing - Active and passive. Washington, D.C., Artech House, v.1. 456p. 1981.

VALERIANO, M.M.; EPIPHANIO, J.C.N.; FORMAGGIO, A.R.; OLIVEIRA, J.B. Bidirectional reflectance of tropical soils. International Journal of Remote Sensing, London, v.16, n.1, p.113 - 128, 1995.

VAN DAM R.L. Landform characterization using 62 geophysics-Recent advances, applications, and emerging tools. Geomorphology, 2012. Doi: 137:57–73. 63.

VISCARRA ROSSEL, R. A.; BEHRENS, T.; BEN-DOR, E.; BROWN, D. J.; DEMATTÊ, J. A. M.; SHEPHERD, K. D.; SHI, B. STENBERG, A. STEVENS, V. ADAMCHUK, H. AÏCHI, B. G. BARTHÈS, H. M. BARTHOLOMEUS, A. D. BAYER, M. BERNOUX, K. BÖTTCHER, L. BRODSKÝ, C. W. DU, A. CHAPPELL, Y. FOUAD, V. GENOT, C. GOMEZ, S. GRUNWALD, A. GUBLER, C. GUERRERO, C. B. HEDLEY, M. KNADEL, H. J. M. MORRÁS, M. NOCITA, L. RAMIREZ-LOPEZ, P. ROUDIER, E. M. RUFAST. CAMPOS, P. SANBORN, V. M. SELLITTO, K. A. SUDDUTH, B. G. RAWLINS, C. WALTER, L. A. WINOWIECKI, S. Y. HONG, E W. Ji A global spectral library to characterize the world’s soil. Earth-Science Reviews, v. 155, n. February, p. 198–230, 2016.

VISCARRA ROSSEL R. The Soil Spectroscopy Group and the development of a global soil spectral library. Pedometron, The Newsletter of the Pedometrrics Commission of the IUSS, Issue 25. (2008).

VISCARRA ROSSEL R.A., WALVOORT D.J.J., MCBRATNEY A.B., JANIK L.J., SKJEMSTAD J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131: 59–75. 2006.

WOOD, J. Overview of software packages used in geomorphometry. In: HENGL, T.; REUTER, H.I. Geomorphometry: Concepts, Software, Applications. Amsterdam: Elsevier, 2009, Cap.10. p.257-267.

YOUNG, I.M.; CRAWFORD, J.W. Interaction sand self-organization in the soil- microbe complex. Science 304,1634–1637. 2004.

ZAJÍCOVÁ, K.; CHUMAN, T. Application of ground penetrating radar methods in soil studies: A review. Geoderma, v. 343, n. February, p. 116–129, 2019

ZHANG, X. L.; DAO, L. G.; ZHANG, C. S.; MORRISON, L.; HONG, B.; ZHANG, H. X.; GAN, Y. M. Mapping the spatial distribution of soil depth in a grassland ecosystem with the aid of ground penetrating radar and GIS (Northwestern Sichuan, China). GRASSLAND SCIENCE Edição 64, Pag: 217-225. 2018.




DOI: https://doi.org/10.26848/rbgf.v13.2.p487-509

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License