Validation of SMOS L3 AND L4 Soil Moisture Products In The Remedhus (SPAIN) AND CEMADEN (BRAZIL) Networks

Luciana Rossato Spatafora, Mercè Vall-llossera, Adriano Camps, David Chaparro, Regina Célia dos Santos Alvalá, Humberto Barbosa

Resumo


This work analyzes the quality of the soil moisture L3 (25 km) and L4 (1 km) products generated at the Barcelona Expert Center (BEC) in two sites located in distinct semi-arid regions, where measurement networks are installed: “Red de Estaciones de Medición de la Humedad del Suelo” (REMEDHUS), which is located in the central part of the Duero basin (Spain), and National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), at Northeast of the Brazil. REMEDHUS has been used as a calibration/validation site for SMOS and SMAP missions. It is a dense network covering 35 x 35 km2 and it has 22 stations. The CEMADEN network provides a database for the development of early warnings for natural disasters that occurs in Brazil, such as droughts and floods. It is a sparse network covering 1000 x 1000 km2 with more than 500 station. Results show good correspondence between SMOS L4 data and the in situ soil moisture data for REMEDHUS and CEMADEN networks. Correlations mean range from 0.3 to 0.8, and depend mainly on the station situation, soil type, and land cover on both Spain and Brazil networks. For the average data of both series, the correlation coefficient is higher than 0.6. Results show that the L4 product are better correlated than the L3 product, although L4 and L3 products are quite similar. This indicates that both products are ready for its operational use, with L4 providing a better representation of the soil moisture status at finer scales.

Validação de produtos de umidade do solo, SMOS L3 e L4, nas redes REMEDHUS (Espanha) e CEMADEN (Brasil)

 

R E S U M O

Este trabalho analisa a qualidade dos produtos L3 (25 km) e L4 (1 km) de umidade do solo gerados no Barcelona Expert Center (BEC) em dois locais localizados em regiões semi-áridas distintas, onde estão instaladas redes de medição: Estações de Medição de Umidade do Solo” (REMEDHUS), localizado na parte central da bacia do Douro (Espanha), e Centro Nacional de Monitoramento e Aviso Prévio de Desastres Naturais (CEMADEN), no nordeste do Brasil. O REMEDHUS foi usado como um local de calibração / validação para missões SMOS e SMAP. É uma rede densa cobrindo 35 x 35 km2 e possui 22 estações. A rede CEMADEN fornece um banco de dados para o desenvolvimento de alertas precoces de desastres naturais que ocorrem no Brasil, como secas e inundações. É uma rede esparsa cobrindo 1000 x 1000 km2 com mais de 500 estações. Os resultados mostram boa correspondência entre os dados SMOS L4 e os dados de umidade do solo in situ para as redes REMEDHUS e CEMADEN. As correlações variam de 0,3 a 0,8 e dependem principalmente da situação da estação, tipo de solo e cobertura do solo nas redes da Espanha e do Brasil. Para os dados médios de ambas as séries, o coeficiente de correlação é superior a 0,6. Os resultados mostram que o produto L4 está melhor correlacionado que o produto L3, embora os produtos L4 e L3 sejam bastante semelhantes. Isso indica que ambos os produtos estão prontos para seu uso operacional, com L4 fornecendo uma melhor representação do status de umidade do solo em escalas mais refinadas.

Palavras-chave: umidade do solo, satélite SMOS, validação, REMEDHUS, CEMADEN.


Palavras-chave


Soil Moisture, SMOS satellite, ground truth, calibration, validation, REMEDHUS, CEMADEN.

Texto completo:

PDF (English)

Referências


Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., Wagner, W., 2012. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sensing of Environment, 118, 215-226.

Antonino, A. C. D., Sampaio, E.V. S. B., Dall’Olio, A., Salcedo, I. H., 2000. Balanço hídrico em solo com cultivos de subsistência no semi-árido do Nordeste do Brasil. Revista Brasileira de Engenharia Agrícola Ambiental 1:29-34. Available online at http://www.scielo.br/pdf/rbeaa/v4n1/v4n1a06.pdf.

Banks, C. J.; Srokosz, M. A.; Cipollini, P.; Snaith, H. M.; Blundell, J. R.; Gommenginger, C. P.; Tzortzi, E., 2016. Reduced ascending/descending pass bias in SMOS salinity data demonstrated by observing westward-propagating features in the South Indian Ocean. Remote Sensing of Environment, 180, 154–163.

Barcelona Expert Center on Radiometric Calibration and Ocean Salinity. http://cp34-bec.cmima.csic.es/thredds/catalog.html.

Barella-Ortiz, A. Polcher, J.; Rosnay P.; Piles, M.; Gelati, E., 2017. Comparison of measured brightness temperatures from SMOS with modelled ones from ORCHIDEE and H-TESSEL over the Iberian Peninsula. Hydrol. Earth Syst. Sci., 21, 357–375. doi:10.5194/hess-21-357-2017.

Celaschi1, S.; Xavier Jr, A. L., 2016. Status of a Brazilian Automatic Hydro-meteorological territorial network. XXXIV Simpósio Brasileiro de Telecomunicações – SBrT, August 30 to September 2, Santarém, PA.

Dorigo, W. A. Wagner, W. Hohensinn, R. Hahn, S. Paulik, M. Drusch, C. Mecklenburg, S.; vanOevelen, P., Robock, A., Jackson, T., 2011. “Theinternational soil moisture network: A data hosting facility for global in situ soil moisture measurements,” Hydrol. Earth Syst. Sci. Discuss., vol. 8, no. 1, pp. 1609–1663.

Duveiller, G.; Cescatti, A., 2016. “Spatially downscaling sun-induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity.” Remote Sensing of Environment 182 72-89.

Entekhabi, D., Nakamura, H., Njoku, E. G., 1994. Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multi frequency remotely sensed observations, IEEE Transactions on Geoscience and Remote Sensing, v. 32, n.2, p. 438-448.

Gumuzzio, J., Brocca, L., Sánchez, N., González-Zamora, A., MartínezFernández, J., 2016. Comparison of SMOS, modelled and in situ long-term soil moisture series in the northwest of Spain, Hydrological Sciences Journal, 61:14, 2610-2625, DOI: 10.1080/02626667.2016.1151981

Gutiérrez, A. P. A.; Engle, N. L. Nys, E. D. Molejón, C. Martins, E. S., 2014. Drought preparedness in Brazil. Weather and Climate Extremes, 3, 95–106.

González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Piles, M.; Olmedo, E.; Martínez-Fernández, J., 2015. Validation of SMOS L2 and L3 soil moisture products over the Duero Basin at different spatial scales. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W3, 2015 36th International Symposium on Remote Sensing of Environment, 11–15 May, Berlin, Germany.

IBGE, 2006. Instituto Brasileiro de Geografia e Estatística. Censo agropecuário. 775 p. http://www.ibge.gov.br/home/.

INSA, 2014. Instituto Nacional do Semiárido. http://www.insa.gov.br/.

Jackson, T. J., Schmugge, T. J., O’Neill, P. E., 1984. Passive microwave remote sensing of soil moisture from an aircraft platform. Remote Sens. Environ., 14:135-151.

Jackson, T.J., Bindlish, R., Cosh, M.H., Zhao, T., Starks, P.J., Bosch, D.D., Seyfried, M., Moran, M.S., Goodrich, D.C., Kerr, Y. H., Leroux, D., 2012. Validation of soil moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Transactions on Geoscience and Remote Sensing, 50, 1530-1543

Hastenrath, S., 2006. Circulation and teleconnection mechanisms of Northeast Brazil droughts. Progress in Oceanography 70:407-415. doi: 10.1016/J.Pocean.2005.07.004.

Hastenrath, S., 2012. Exploring the climate problems of Brazil's Nordeste: a review. Climatic Change 2:243-25. doi: 10.1007/s10584-011-0227-1.

Kerr, Y. H., Waldteufel P., Wigneron J. P., Martinuzzi, J. M., Font J., Berger, M., 2001. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing 39:1729-1735.

Marengo, J. A., Jones, R., Alves, L. M.; Valverde, M. C., 2009. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology. Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/joc.1863.

Marengo, J. A.; Borma, L. S., Rodriguez, Daniel, A.; Pinho, P.; Soares, Wagner R.; Alves, Lincoln M. 2013. Recent Extremes of Drought and Flooding in Amazonia: Vulnerabilities and Human Adaptation. American Journal of Climate Change, v. 02, p. 87-96.

Marengo, J. A., Torres, R. R., Alves, L. M., 2016. Drought in Northeast Brazil-past, present, and future. Theoretical and Applied Climatology, v. 20, p. 1-12.

Medina, V. B., García, D. A. N., 2015. Mapa de cultivos y superficies naturales de Castilla y León. XVI Congreso de la Asociación Española de Teledetección, Sevilla.

Moura, A. D., Shukla, J., 1981. On the Dynamics of Droughts in Northeast Brazil - Observations, Theory and Numerical Experiments with a General-Circulation Model. Journal of the Atmospheric Sciences 38:2653-2675. doi: 10.1175/1520-0469.

Mousa, B. G., & Shu, H., 2020. Spatial evaluation and assimilation of SMAP, SMOS, and ASCAT satellite soil moisture products over Africa using statistical techniques. Earth and Space Science, 7, e2019EA000841. https://doi. org/10.1029/2019EA000841.

Pablos, M., Martínez-Fernández, J., Piles, M., Sánches, N.; Vall-llossera, M.; Camps, A., 2016. Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperatures Dynamics Using in Situ and Satellite Observations. Remote Sens., 8, 587.

Paredes, T. F.; Barbosa, H., 2017. Evaluation of the SMOS-Derived Soil Water Deficit Index as Agricultural Drought Index in Northeast of Brazil. Water, 9, 377, doi:10.3390/w9060377.

Paredes, F. J., Barbosa, H., Araujo, K., & dos Santos, G., 2017. Preliminary evaluation of ASCAT-SWI and SMOS SM soil moisture products against in-situ observations in the Brazilian Caatinga biome. Journal of Hyperspectral Remote Sensing, 7(4): 223-231, doi: 10.5935/jhrs.v7i4.25224.

Piles, M., Sanchez, N., Vall-llossera, M., Camps, A., MartínezFernández, J., Martínez, J., & González-Gambau, V., 2014. A dowscaling approach for SMOS land observations: long-term evaluation of high resolution soil moisture maps over the Iberian Peninsula. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 3845-3857.

Piles, M., Camps, A., Vall-llossera, M., Corbella, I., Panciera, R., Rudiger, C., Kerr, Y. H, Walker, J., 2011. IEEE transactions on geoscience and remote sensing, v. 49, n. 9, p. 3156-3166. Doi: 10.1109/TGRS.2011.2120615.

Portal, Gerard; Jagdhuber, Thomas; Vall-llossera, M.; Camps, A.; Pablos, M.; Entekhabi, D.; Piles, M., 2020. Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula. Remote Sensing. 12. 570. 10.3390/rs12030570.

Reichle, R. H.; Koster, R. D.; Dong, J.; Berg, A. A., 2004. Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation, Journal of Hydrometeorology, v.5, n.3, p. 430442.

Sabater, J. M., Rodriguez-Fernandez, N., Sabater, J., Richaume P., Rosnay, P., 2017. SMOS near-real-time soil moisture product: processor overview and first validation results. Hydrology and Earth System Sciences, European Geosciences Union, 21 (10), pp.5201 - 5216. ff10.5194/hess-21-5201.

Sánchez, N., Martinez-Fernandez, J., Scaini, A., Perez-Gutierrez, C., 2012. Validation of the SMOS L2 Soil Moisture Data in the REMEDHUS Network (Spain). IEEE Transactions on Geoscience and Remote Sensing, 50, 1602-1611.

Sánchez-Ruiz, S., Piles, M., Sánchez, N., Martínez-Fernández, J., Vall-llossera, M., & Camps, A., 2014. Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates. Journal of Hydrology, 516, 273-283.

Schmugge T. J.; Gloersen, L. P.; Wilheit, T. T. Geiger, F., 1974. Remote sensing of soil moisture with microwave radiometers. J Geophys Res. 79 (2):317– 23.

Silva, V. P. R.; Pereira, E. R. R.; Almeida, R. S. R., 2012. Estudo da variabilidade anual e intra-anual da precipitação na região Nordeste do Brasil. Revista Brasileira de Meteorologia, v.27, n.2, 163 - 172.

SUDENE, 2014. Superintendência do Desenvolvimento do Nordeste. http://www.sudene.gov.br/.

Tenório, R. S., 1989. The Meteorology of Northeast Brazil and its influence for Agriculture. Master’s thesis Thesis, University of Reading, Reading, UK.




DOI: https://doi.org/10.26848/rbgf.v13.2.p691-712

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License