Especiação de metais em sedimentos de superfície de uma unidade de conservação: Refúgio Biológico de Santa Helena - Paraná

Andreine Aline Roos, Sueli Pércio Quináia, Adelmo Lowe Pletsch, Ketty Priscila Maiara Gadelha dos Santos

Resumo


O Refúgio Biológico de Santa Helena (RBSH) é uma unidade de conservação banhada pelo reservatório de Itaipu, no oeste do Paraná, Brasil. Apesar de ser uma área protegida, seu entorno é passível de contaminação por diversas fontes antropogênicas, principalmente ligadas a agropecuária. Objetivo principal desse estudo foi determinar os teores e a biodisponibilidade dos íons metálicos (Cr, Cu, Pb, Zn, Fe e Cd) nos sedimentos do entorno do RBSH, por meio da estração sequencial de Tessier, no verão e outono de 2019, estações climáticas que apresentaram diferentes níveis de água do reservatório. As diferenças hidrológicas entre o verão e o outono promoveram um acúmulo de alguns íons metálicos nos sedimentos e a liberação de outros para a coluna da água de uma estação para a outra. Os maiores teores de íons metálicos nos sedimentos foram detectados na fração ligada aos óxidos e hidróxidos de Fe e Mn, independente da estação climática, provavelmente devido à origem basáltica dos solos da região. No entanto, nenhum dos íons metálicos ultrapassou o valor do PEL (nível de efeitos prováveis), indicando que apenas ocasionalmente são esperados efeitos adversos à biota. Os indicadores de qualidade dos sedimentos mostraram uma contaminação moderada por Cr e Pb, em virtude de contribuições antropogênicas.


Palavras-chave


sedimentos; íons metálicos; especiação; extração sequencial

Referências


ANA, Agência Nacional de Águas. 2020. Bacia do Rio Paraná: Reservatórios. Disponível: https://www.ana.gov.br/sar/sin/b_parana/#. Acesso: 24 fev 2020.

Aghalari, Z., Dahms, H.U., Sillanpää, M., Sosa-Hernandez, J.E., Parra-Saldívar, R., 2020. Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review. Globalization and Health 16, 1–11.

Alan, M., Kara, D., 2019. Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around Boron Mines in Turkey. Talanta 194, 189–198.

Algül, F., Beyhan, M., 2020. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific Reports 10,1–12.

Belo, A.; Quináia, S. P.; Pletsch, A. L., 2010. Avaliação da concentração de metais em sedimentos do superficiais das praias do Lago de Itaipu. Química Nova 33, 79–82.

Birch, G., Lee, J-H., 2020. The use of sedimentary metal data in predictive modelling of estuarine contamination, assessment of environmental condition and pollutant source identification (Narrabeen Lagoon, Sydney, Australia). Environmental Science and Pollution Research 27, 43685–43699.

Bocardi, J.M.B., Pletsch, A.L., Melo, V.F., Quinaia, S.P., 2020. Quality reference values for heavy metals in soils developed from basic rocks under tropical conditions. Journal of Geochemical Exploration 217.

Botwe, B.O., Alfonso, L., Nyarko, E., Lens, P.N.L., 2017. Metal distribution and fractionation in surface sediments of Coastal Tema Harbour (Ghana) and Its ecological implications. Environmental Earth Sciences 76, 1-17.

Caviglione, J.H., Kiihl, L.R.B., Caramori, P.H., Oliveira, D., 2000. Cartas climáticas do Paraná. IAPAR, Londrina.

Christophoridis, C., Evgenakis, E., Bourliva, A., Papadopoulou, N., Fytianos, K., 2020. Concentration, fractionation, and ecological risk assessment of heavy metals and phosphorus in surface sediments from lakes in N. Greece. Environmental Geochemistry and Health 42, 2747–2769.

CONAMA, 2011. Resolução n° 430, de 13 de maio.

CONAMA, 2012. Resolução n° 454, de 1 de novembro.

EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária, 2006. Sistema brasileiro de classificação de solos. Rio de Janeiro.

EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária, 2017. Manual de métodos de análise de solo. Brasília.

EPA - Taiwan. Administração de Proteção Ambiental de Taiwan. 2012. Projeto de Controle de Qualidade de Sedimentos de 2010 a 2012, Administração de Proteção Ambiental, Executado Por Yuan, R.O.C (Taiwan). Disponível: https://www.epa.gov.tw/eng/. Acesso: 5 de dez.

Esteves, F.A., 2011. Fundamentos de limnologia, 3 ed. Interciência, Rio de Janeiro.

Gao, L., Wang, Z., Li, S., Chen, J., 2018. Bioavailability and toxicity of trace metals (Cd, Cr, Cu, Ni, and Zn) in sediment cores from the Shima River, South China. Chemosphere 192, 31–42.

Gómez Ariza, J.L., Giráldez, I., Sánchez-Rodas, D., Morales, E., 2000. Comparison of the feasibility of three extraction procedures for trace metal partitioning in sediments from South-West Spain. Science of the Total Environment 246, 271–283.

Gopal, V., Krishnamurthy, R.R., Kiran, D.R.S., Magesh, N.S., Jayaprakash, M., 2020. Trace metal contamination in the marine sediments off point Calimere, Southeast Coast of India. Marine Pollution Bulletin 161, 1-9.

Gresens, R.L. 1967. Compositions-volume relationships of metasomatism. Chemical Geology 2, 47–65.

Hahn, J., Opp, C., Evgrafova, A., Groll, M., Zitzer, N., Laufenberg, G., 2018. Impacts of dam draining on the mobility of heavy metals and arsenic in water and basin bottom sediments of three studied dams in Germany. Science of the Total Environment 640–641, 1072–1081.

Hakanson, L. 1980. An ecological risk index for aquatic pollution control a sedimentological approach. Water Research 14, 975–1001.

Hassan, H.M., Castillo, A.B., Yigiterhan, O., Elobaid, E.A., Al-Obaidly, A., Al-Ansari, E., Obbard, J.P., 2018. Baseline concentrations and distributions of polycyclic aromatic hydrocarbons in surface sediments from the Qatar Marine Environment. Marine Pollution Bulletin 126, 58–62.

Hossain, M.M.A.A., Yajima, I., Tazaki, A., Xu, H., Saheduzzaman, M., Ohgami, N., Ahsan, N., Akhand, A.A., Kato, M., 2019. Chromium-mediated hyperpigmentation of skin in male tannery workers in Bangladesh. Chemosphere 229, 611–617.

Hou, F.L., Lv, G.H., Teng, D.X., 2020. Spatial variability characteristics and environmental effects of heavy metals in surface riparian soils and surface sediments of Qinggeda Lake. Human and Ecological Risk Assessment 26, 2027–2043.

Itaipu. n.d. Disponível: http://www.itaipu.gov.br. Acesso 03 mar. 2020.

Jia, Y., Kong, Q., Yang, Z., Wang, L., 2016. Accumulation behavior and risk assessment of heavy metals and arsenic in tissues of white bream (Parabramis Pekinensis) from the Xiang River, Southern China. Environmental Science and Pollution Research 23, 25056–25064.

Kliver, S.M., Pavan, J.J., Gonçalves, M., Longo, E.S., Demenighi, E., Sen, S., Gonçalves, B S., 2010. Plano de Manejo – Área de Relevante Interesse Ecológico – Santa Helena. Revisão 2010. Disponível:http://santahelena.pr.gov.br/paginasmenudir.php?id=104&setor=4. Acesso: 25 mai. 2019.

Lécrivain, N., Frossard, V., Clément, B., 2019. Changes in mobility of trace metals at the sediment-water-biota interfaces following laboratory drying and reimmersion of a lacustrine sediment. Environmental Science and Pollution Research.

Li, H., Ye, S., Ye, J., Fan, J., Gao, M., Guo, H., 2017. Baseline survey of sediments and marine organisms in Liaohe Estuary: heavy metals, polychlorinated biphenyls and organochlorine pesticides. Marine Pollution Bulletin 114, 555–563.

Liu, J., Song, J., Yuan, H., Li, X., Li, N., Duan, L., 2019. Trace metal comparative analysis of sinking particles and sediments from a coastal environment of the Jiaozhou Bay, North China: Influence from sediment resuspension. Chemosphere 232, 315–326.

Long, E.R., Macdonald, D.D., Smith, S.L., Calder, F.D., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19, 81-97.

Magesh, N.S., Chandrasekar, N., Krishnakumar, S., Peter, T.S., 2017. trace element contamination in the nearshore sediments of the Tamiraparani Estuary, Southeast Coast of India. Marine Pollution Bulletin 116, 508–516.

Miguel, E. de, Charlesworth, S., Ordóñez, A., Seijas, E., 2005. Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain). Science of the Total Environment 340, 137–148.

Mikkonen, H.G., Graaff, R.V., Clarke, B.O., Dasika, R., Wallis, C.J., Reichman, S.M., 2018. Geochemical indices and regression tree models for estimation of ambient background concentrations of copper, chromium, nickel and zinc in soil. Chemosphere 210, 193–203.

Müller, G. 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal 2, 108–118.

Najamuddin, Prartono, T., Sanusi, H.S., Nurjaya, I.W., 2016. Seasonal Distribution and Geochemical fractionation of heavy metals from surface sediment in a tropical estuary of Jeneberang River, Indonesia. Marine Pollution Bulletin 111, 456–462.

Namngam, N., Xue,W., Liu, X., Kootattep, T., Shrestha, R.P., Wattayakorn, G., Tabucanon, A.S., Yu, S., 2021. Sedimentary metals in developing tropical watersheds in relation to their urbanization intensities. Journal of Environmental Management 278.

Nour, H.E.S., Nouh, E.S., 2020. Comprehensive pollution monitoring of the Egyptian Red Sea Coast by using the environmental indicators. Environmental Science and Pollution Research 27, 28813–28828.

Pavan, M.A., Bloch, M.F., Zempulski, H.C., Miyazawa, M., Zocoler, D.C., 1992. Manual de análise química de solo e controle de qualidade. IAPAR, Londrina.

Pobi, K.K., Satpati, S., Dutta, S., Nayek, S., Saha, R.N., Gupta, S., 2019. Sources evaluation and ecological risk assessment of heavy metals accumulated within a natural Stream of Durgapur industrial zone, India, by using multivariate analysis and pollution indices. Applied Water Science 9, 1–16.

Oliveira, P.C. dos R., Kraak, M.H.S., Pena-Ortiz, M., Geest, H.G.van der, Verdonschot, P.F.M,. 2020. Responses of macroinvertebrate communities to land use specific sediment food and habitat characteristics in lowland streams. Science of the Total Environment 703, 1-9.

Rodrigues, M.L.K. 1997. Diagnóstico da poluição por elementos-traço no sedimento da Bacia Hidrográfica o Rio Caí. Dissertação (Mestrado), Rio Grande do Sul, UFRGS.

Rodríguez-Blanco, M.L., Soto-Varela, F.M., Taboada-Castro, M., Taboada-Castro, M.T., 2018. Using hysteresis analysis to infer controls on sediment-associated and dissolved metals transport in a small humid temperate catchment. Journal of Hydrology 565, 49–60.

Seiler, H.G.; Sigel, H. 1988. Handbook on Toxicity of Inorganic Compounds.

Silva, D.S., Cerqueira, U.M.F.M., Aguiar, R.M., Carneiro, P.L.S., Bezerra, M.A., 2020. Characterization, fractionation and mobility of trace elements in surface sediments of the Jequiezinho River, Bahia, Brazil. An Acad Bras Cienc 92, 1-20.

Sodrzeieski, P.A., Andrade, L.C., Tiecher, T., Camargo, F.A.O., 2019. Physico-chemical variability and heavy metal pollution of surface sediment in a non-channeled section of Dilúvio Stream (Southern Brazil) and the influence of channeled section in sediment pollution. Revista Ambiente e Água 14, 1-13.

Taylor, M.P., Isley, C.F., Glover, J., 2019. Prevalence of childhood lead poisoning and respiratory disease associated with lead smelter emissions. Environment International 127, 340–352.

Tessier, A., Campbell, P.G.C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51, 844–851.

Tonhá, M.S., Araújo, D.F., Araújo, R., Cunha, B.C.A., Machado, W., Portela, J.F, Souza, J.P., Carvalho, H.K., Dantas, E.L., Roig, H.L., Seyler, P., Garnier, J., 2021. Trace metal dynamics in an industrialized Brazilian River: a combined application of zn isotopes, geochemical partitioning, and multivariate statistics. Journal of Environmental Sciences (China) 101, 313–325.

Tytła, M., Kostecki, M., 2019. Ecological risk assessment of metals and metalloid in bottom sediments of water reservoir located in the key anthropogenic ‘hot spot’ area (Poland). Environmental Earth Sciences 78, 1–17.

Vareda, J.P., Valente , A.J.M., Durães, L., 2019. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. Journal of Environmental Management 246, 101–118.

Wang, B.R., Dahms, H.U., Wu, M.C., Jhuo, N.J., Hsieh, C.Y., 2021. After remediation – using toxicity identification evaluation of sediment contamination in the subtropical Erren River Basin. Chemosphere 262, 1–10.

Wu, W., Qu, S., Nel, W., Ji, J., 2021. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: a comparative study from different regions in China. Chemosphere 262, 1-11.

Zhang, C., Yu, Z.G., Zeng, G.M., Jiang, M., Yang, Z.Z., Cui, F., Zhu, M.Y., Shen, L.Q., Hu, L,. 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environment International 73, 270–281.

Zhang, L., McKinley, J., Cooper, M., Peng, M., Wang, Q., Song, Y., Cheng, H., 2020. a regional soil and river sediment geochemical study in Baoshan Area, Yunnan Province, Southwest China. Journal of Geochemical Exploration 217.




DOI: https://doi.org/10.26848/rbgf.v14.2.p%25p

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License