Impacto do biochar de resíduos da indústria de biodiesel sobre os atributos de um solo arenoso

Julyana Braga de Oliveira, ERIKA Valente de medeiros, Jenifer Sthephanie Araújo da Silva, Gustavo Pereira Duda, Diogo Paes da Costa, Rafaela França Felíx, José Romualdo de Souza Lima

Resumo


O biochar é produto da degradação térmica de materiais orgânicos na presença limitada de oxigênio (pirólise), e sua adição aos solos influencia nos atributos químicos, físicos e em comunidades microbianas. A produção do biochar pode ser uma alternativa para o reaproveitamento de resíduos da agro-indústria. O objetivo do presente estudo foi avaliar o impacto de resíduos gerados na indústria de biodiesel (puro e transformado em biochar) nas atividades enzimáticas, atributos químicos e microbiológicos do solo arenoso. O experimento foi distribuído em esquema fatorial 5 x 5, sendo o primeiro fator constituído por: apenas o solo (controle); resíduo de Graviola (RG), resíduo de Pinha (RP) biochar do resíduo de graviola (BG) e biochar do resíduo de pinha (BP) e o segundo fator, cinco tempos de incubação 0, 30, 60, 90 e 120 dias após incubação (DAI), com 4 repetições. Foram avaliados, atributos químicos do solo, carbono da biomassa microbiana (CBM) e atividades enzimáticas (uréase, fosfatase acida e alcalina). Solos tratados com RG apresentaram um incremento na urease aos 120 DAI (3,8 vezes maior que o controle). A aplicação de BG ao solo no tempo 0 incrementou os teores de fosfatase ácida, fosfatase alcalina, uréase e CBM (1,1; 1,2; 1,4 e 1,1 vezes) e o pH (1,2 vezes). Solos que receberam BP apresentaram incrementos no pH, CBM aos 120 DAI, fosfatase alcalina aos 120 DAI e uréase aos 60 DAI. Ambos os resíduos e biochar de graviola contribuíram para a qualidade bioquímica, microbiológica e química do Neossolo regolítico arenoso.

 

Impact of biochar Residues from the biodiesel industry on the attributes of a sandy soil

A B S T R A C T

The current call for the use of renewable energy generates a quantity of waste that, if not handled correctly, can cause environmental damage. For this reason, research that aims to reuse these residues to be applied in agriculture has been carried out, such as those that transform such wastes into biochar. Biochar is a product of pyrolysis and its addition to soils has an influence on chemistry, physics and microbial communities. The objective of the present study was to evaluate the impact of seed cake (pure and transformed into biochar) on the enzymatic activities, chemical and microbiological attributes of the sandy soil. The experiment was distributed in a 5 x 5 factorial scheme, the first factor being: only the soil (control); Graviola residue (RG), Pine cone residue (RP) Biochar of graviola residue (BG) and Biochar of pine cone residue (BP) and the second factor, five incubation times 0, 30, 60, 90 and 120 days after incubation (DAI). Soil chemical attributes, microbial biomass carbon (CBM) and enzymatic activities (urea, acid and alkaline phosphatase) were evaluated. RG treated soils showed an increase in urease at 120 DAI (3.8 times greater than the control). The application of BG to the soil at time 0 increased the levels of acid phosphatase, alkaline phosphatase, urea and CBM (1.1; 1.2; 1.4 and 1.1 times) and pH (1.2 times). Soils that received BP showed increases in pH, CBM at 120 DAI, alkaline phosphatase at 120 DAI and urea at 60 DAI. Soursop biochar contributed to the biochemical and microbiological quality of the soil, demonstrating its greater potential for agricultural use compared to the others.

Keywords: biochar, soil chemistry, enzyme activity, incubation


Palavras-chave


Reuso de resíduos; Biocarvão; Química do solo; Atividade enzimática; Incubação

Texto completo:

PDF

Referências


Bera, T., Collins, H. P., Alva, A. K., Purakayastha, T. J., Patra, A. K. 2016. Biochar and manure effluent effects on soil biochemical properties under maize production. Appl. Soil Ecol., 107, 360-367.http://dx.doi.org/10.1016/j.apsoil.2016 .07.011.

Calderon, F.J., Vigil, M.F., Benjamin, J., 2018. Compost input effects on dryland wheat and forage yields and soil quality. Pedosphere 28, 451–462. https://doi.org/ 10.1016/S1002-0160(17)60368-0.

Campos, P., Miller, A. Z., Knicker, H., Costa-Pereira, M. F., Merino, A., & De la Rosa, J. M. (2020). Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Management, 105, 256-267. https://doi.org/10.1016/j.wasman.2020.02.013

Cavalheiro, L. F., Misutsu, M. Y., Rial, R. C., Viana, L. H., & Oliveira, L. C. S. (2020). Characterization of residues and evaluation of the physico chemical properties of soybean biodiesel and biodiesel: Diesel blends in different storage conditions. Renewable Energy, 151, 454-462. https://doi.org/10.1016/j.renene.2019.11.039

Cui, L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., ... & Liu, Y. (2016). Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment. Ecological engineering, 93, 1-8. https://doi.org/10.1016/j.ecoleng.2016.05.007

Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification-A critical review. Science of the Total Environment, 581, 601-611. https://doi.org/10.1016/j.ecoenv.2019.05.034.

De Medeiros, E. V., Silva, A. O., Duda, G. P., dos Santos, U. J., & de Souza Junior, A. J. (2019). The combination of Arachis pintoi green manure and natural phosphate improves maize growth, soil microbial community structure and enzymatic activities. Plant and soil, 435(1-2), 175-185. https://doi.org/10.1007/s11104-018-3887-z

Dos Santos Araújo, V., da Silva, G. B., Galvão, J. R., do Amarante, C. B., Silvestre, W. V. D., & Gonçalves, D. A. M. (2020). Microrganismos potenciais e incremento de biomassa em grama esmeralda (Zoysia japonica Steud.). Revista Ibero-Americana de Ciências Ambientais, 11(1), 309-320. https://doi.org/10.6008/CBPC2179-6858.2020.001.0028

Dubey, R. K., Dubey, P. K., Chaurasia, R., Singh, H. B., & Abhilash, P. C. (2020). Sustainable agronomic practices for enhancing the soil quality and yield of Cicer arietinum L. under diverse agroecosystems. Journal of Environmental Management, 262, 110284. https://doi.org/10.1016/j.jenvman.2020.110284

Eivazi, F., Tabatabai, M.A., 1977. Phosphatases in soils. SoilBiol.Biochem.9,167–172.http://dx.doi.org/10.1016/0038717(77)90070-0.

Farkas, É., Feigl, V., Gruiz, K., Vaszita, E., Ujaczki, É., Fekete-Kertész, I., ... & Rékási, M. (2018). Microcosm incubation study for monitoring the mid-term effects of different biochars on acidic sandy soil applying a multiparameter approach. Process Safety and Environmental Protection, 120, 24-36. https://doi.org/10.1016/j.psep.2018.08.027

Farkas, É., Feigl, V., Gruiz, K., Vaszita, E., Fekete-Kertész, I., Tolner, M., ... & Rékási, M. (2020). Long-term effects of grain husk and paper fibre sludge biochar on acidic and calcareous sandy soils–A scale-up field experiment applying a complex monitoring toolkit. Science of The Total Environment, 138988. https://doi.org/10.1016/j.scitotenv.2020.138988

Ferjani, A. I., Jeguirim, M., Jellali, S., Limousy, L., Courson, C., Akrout, H., ... & Bennici, S. (2019). The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties. Renewable and Sustainable Energy Reviews, 107, 425-433. https://doi.org/10.1016/j.rser.2019.03.034

França, A.F. Impacto do biochar, esterco ovino e trichoderma nas características químicas e microbiológicas de um neossolo quartzarenico no cultivo de tomate e alface. Dissertação em Produção Agrícola. 2019. 63p.

Foster, E. J., Hansen, N., Wallenstein, M., Cotrufo, M. F. 2016. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agric. Ecosyst. Environ. 233, 404-414.http://dx.doi.org/10.1016/j.agee.2016.09.029.

Giagnoni, L. et al. Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma, v. 344, p. 127-136, 2019. https://doi.org/10.1016/j.geoderma.2019.03.011

Kandeler, E., Gerber, H., 1988. Short-term assay of soil urease activity using color-imetric determination of ammonium. Biol. Fertil. Soils, 6,68-72.http://dx.doi.org/10.1007/BF0025792

Khadem, A., & Raiesi, F. (2017). Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Applied Soil Ecology, 114, 16-27. https://doi.org/10.1016/j.apsoil.2017.02.018

Kirinus, M. B. M., Barreto, C. F., Silva, P. S., Krolow, A. C. R., Gomes, C. B., & Malgarim, M. B. (2018). Uso da torta de mamona na produção orgânica de morangos cv. Camarosa. Agrarian, 11(39), 1-5. https://doi.org/10.30612/agrarian.v11i39.5263

Kwak, J. H., Islam, M. S., Wang, S., Messele, S. A., Naeth, M. A., El-Din, M. G., & Chang, S. X. (2019). Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere, 231, 393-404. https://doi.org/10.1016/j.chemosphere.2019.05.128

Kunde, R. J., Stöcker, C. M., de Lima, A. C. R., da Silva, J. L. S., & Pillon, C. N. (2016). Carbono da biomassa microbiana e respiração basal do solo em sistemas de integração lavoura-pecuária no bioma pampa. Revista da Jornada de Pós-Graduação e Pesquisa-Congrega Urcamp, 272-285.

Kamran, Muhammad Aqeel et al. Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure-and peat-derived biochars in different acidic soils. Arabian Journal of Geosciences, v. 11, n. 11, p. 272, 2018. https://doi.org/10.1007/s12517-018-3616-1

Liu, Y., Tang, H., Muhammad, A., & Huang, G. (2019). Emission mechanism and reduction countermeasures of agricultural greenhouse gases–a review. Greenhouse Gases: Science and Technology, 9(2), 160-174. https://doi.org/10.1002/ghg.1848

Lima, J. R. S., Silva, W. M., Medeiros, E. V., Duda, G. P., Corrêa, M. M., Martins Filho, A. P., Clermont-Dauphin, C., Antonino, A. C. D., Hammecker, C. 2018. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma, 319, 14 - 23. http://dx.doi.org/ 10.1016/j.geoderma.2013.06.016.

Manirakiza, E., Ziadi, N., Luce, M. S., Hamel, C., Antoun, H., & Karam, A. (2019). Nitrogen mineralization and microbial biomass carbon and nitrogen in response to co-application of biochar and paper mill biosolids. Applied Soil Ecology, 142, 90-98. https://doi.org/10.1016/j.apsoil.2019.04.025

Martins Filho, A. P.; de Medeiros, E. V.; Lima, J. R. S.; Duda, G. P.; Silva, W. M., ... & Hammecker, C. (2020). Impact of coffee biochar on soil carbon, microbial biomass and enzymatic activities in Semiarid Sandy soil cultivated with maize. Revista Brasileira de Geografia Física, 903-914

Meireles, S.; I. E., Silva, T. M., Matsumoto, S. N., Ramos, P. A. S., Gonçalves, A. N. S., Texeira, E. C., ... & Júnior, E. M. (2019). Respiração basal do solo em consorcio de cafeeiro com grevilia. X Simpósio de Pesquisa dos Cafés do Brasil.

Mendonça, E. de S. Matéria orgânica do solo: métodos de análises. UFV, 2005.

Molnár, M., Vaszita, E., Farkas, É., Ujaczki, É., Fekete-Kertész, I., Tolner, M., ... & Feigl, V. (2016). Acidic sandy soil improvement with biochar—A microcosm study. Science of the Total Environment, 563, 855-865. https://doi.org/10.1016/j.scitotenv.2016.01.091

Nguyen, Thi Thu Nhan et al. The effects of short term, long term and reapplication of biochar on soil bacteria. Science of the Total Environment, v. 636, p. 142-151, 2018. https://doi.org/10.1016/j.scitotenv.2018.04.278

Novak, J. M., Ippolito, J. A., Lentz, R. D., Spokas, K. A., Bolster, C. H., Sistani, K., ... & Johnson, M. G. (2016). Soil health, crop productivity, microbial transport, and mine spoil response to biochars. BioEnergy Research, 9(2), 454-464. https://doi.org/10.1007/s12155-016-9720-8

Quan, G., Fan, Q., Zimmerman, A. R., Sun, J., Cui, L., Wang, H., ... & Yan, J. (2020). Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products. Journal of hazardous materials, 382, 121071. https://doi.org/10.1016/j.jhazmat.2019.121071

Rafael, R. B. A., Fernández-marcos, M. L., Cocco, S., Ruello, M. L., Fornasier, F., & Corti, G. (2019). Benefits of biochars and NPK fertilizers for soil quality and growth of cowpea (Vigna unguiculata L. Walp.) in an acid Arenosol. Pedosphere, 29(3), 311-333.

Rani, P., Mishra, A. R., Mardani, A., Cavallaro, F., Alrasheedi, M., & Alrashidi, A. (2020). A novel approach to extended fuzzy TOPSIS based on new divergence measures for renewable energy sources selection. Journal of Cleaner Production, 257, 120352. https://doi.org/10.1016/j.jclepro.2020.120352

Rathnam, V. M., Modak, J. M., & Madras, G. (2020). Non-catalytic transesterification of dry microalgae to fatty acid ethyl esters using supercritical ethanol and ethyl acetate. Fuel, 275,117998.https://doi.org/10.1016/j.fuel.2020.117998

Rocha, R. L., & Pandolfi, M. A. C. (2019). Geração de resíduos no setor sucroalcooleiro. Revista Interface Tecnológica, 16(1), 384-392.

Şanli, B. G., Uludamar, E., & Özcanli, M. (2019). Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel, 258, 116116.https://doi.org/10.1016/j.fuel.2019.116116

Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Núñez-Delgado, A., Chhajro, M. A., ... & Hu, R. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of environmental management, 228, 429-440. https://doi.org/10.1016/j.jenvman.2018.09.006.

Shi, Y., & Liang, X. (2019). Novel carbon microtube based solid acid from pampas grass stick for biodiesel synthesis from waste oils. Journal of Saudi Chemical Society, 23(5), 515-524. https://doi.org/10.1016/j.jscs.2018.09.004

Song, D., Tang, J., Xi, X., Zhang, S., Liang, G., Zhou, W., & Wang, X. (2018). Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil. European journal of soil biology, 84, 1-10. https://doi.org/10.1016/j.ejsobi.2017.11.003

Sun, Ke et al. Speciation of phosphorus in plant-and manure-derived biochars and its dissolution under various aqueous conditions. Science of The Total Environment, v. 634, p. 1300-1307, 2018. https://doi.org/10.1016/j.scitotenv.2018.04.099

Tabatabai, M. A.; BremmeR, J.M. Assay of urease activity of soils. Soil Biology and Biochemistry. v. 4, n.4, p.479-487. 1972.

Wang H, Zheng H, Jiang Z, Dai Y, Liu G, Chen L, Wang Z (2017) Efficacies of biochar and biochar-based amendment on vegetable yield and nitrogen utilization in four consecutive planting seasons. Sci Total Environ. 593: 124-133. https://doi.org/10.1016/j.scitotenv.2017.03.096

Yamaji, F. M., Marques, C. A., & Nakashima, G. T. (2019, October). Análise da temperatura e do tempo de pirólise para a produção de biochar com palha de cana-de-açúcar. In XXVI CIC e XI CIDTI-Campus Sorocaba. https://doi.org/10.1016/j.apsoil.2019.04.025




DOI: https://doi.org/10.26848/rbgf.v13.5.p%25p

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License