Análise de Susceptibilidade a Alagamento em Juazeiro do Norte
DOI:
https://doi.org/10.26848/rbgf.v14.4.p2204-2219Keywords:
Fenômeno Hidrológico, Vulnerabilidade, SIGAbstract
Este estudo aborda relação de casualidade dos padrões de crescimento urbano com fenômenos ambientais de alagamento. É nesse panorama que os Sistemas de Informações Geográficas (SIG) são considerados como uma poderosa ferramenta de suporte ao planejamento urbano e a tomada de decisão. Nesse sentido, a análise de susceptibilidade a alagamentos de regiões por meio de SIG representa uma informação de alta importância para o poder público, como suporte ao processo de zoneamento urbano, de delimitação de áreas de risco e para a alocação de recursos, com finalidade corretiva e preventiva. Este estudo objetiva determinar áreas susceptíveis a alagamentos no município de Juazeiro do Norte-CE através de técnicas de sensoriamento remoto e geoprocessamento com dados de declividade, elevação, fluxo de água acumulada, curva de nível, tipo de solo e uso e ocupação da terra. Os resultados indicam que o Juazeiro do Norte é uma cidade de média a alta susceptibilidade a alagamento. O mapa gerado serve de alerta para a comunidade e gestores a cerca de eventos hídricos extremos e pode ser utilizado como ferramenta de gestão de drenagem.
Analysis of susceptibility to flooding in Juazeiro do Norte, Ceará
A B S T R A C T
This study addresses the casual relationship between urban growth patterns and environmental phenomena, which we have in Geographic Information Systems (GIS) as a powerful tool to support urban planning and decision-making. In this sense, an analysis of susceptibility to flooding of regions through GIS represents important information for the public sector, as support to the urban zoning process, delimitation of risk areas and for the allocation of public resources, with corrective and preventive purposes. Thus, this study aimed to determine areas susceptible to flooding in in the municipality of Juazeiro do Norte, Ceará, through geoprocessing techniques. For that purpose, data on slope, elevation, accumulated water flow, curve number, soil type and land use and occupation were used. The results indicated that Juazeiro do Norte is a city of medium susceptibility to flooding, corresponding to 69% of the municipality and compromising 17% in a high susceptibility. The urban area of the Tiradentes neighborhood deserves alert due to its greater potential for flooding, where 79.5% of its area is very vulnerable. The generated map serves as an instrument for managing and monitoring extreme water events that happen routinely in the city. It also signals the community and managers to take measures to prevent and minimize flooding.
Keywords: hydrological phenomenon, vulnerability, GIS
References
Al-Hinai, H. Y., & Abdalla, R. (2020). Spatial prediction of coastal flood-susceptible areas in muscat governorate using an entropy weighted method. WIT Transactions on Engineering Sciences, 129(August), 121–133. https://doi.org/10.2495/RISK200111
Ali, S. A., Khatun, R., Ahmad, A., & Ahmad, S. N. (2019). Application of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, India. Modeling Earth Systems and Environment, 5(3), 1083–1102. https://doi.org/10.1007/s40808-019-00593-z
Ali, S. A., Parvin, F., Pham, Q. B., Vojtek, M., Vojteková, J., Costache, R., Linh, N. T. T., Nguyen, H. Q., Ahmad, A., & Ghorbani, M. A. (2020). GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin, Slovakia. Ecological Indicators, 117(June). https://doi.org/10.1016/j.ecolind.2020.106620
Avand, M., Moradi, H., & lasboyee, M. R. (2021). Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan watershed, Iran. Advances in Space Research, 67(10), 3169–3186. https://doi.org/10.1016/j.asr.2021.02.011
Barros, J. L., Tavares, A. O., & Santos, P. P. (2021). Land use and land cover dynamics in Leiria City: relation between peri-urbanization processes and hydro-geomorphologic disasters. Natural Hazards, 106(1), 757–784. https://doi.org/10.1007/s11069-020-04490-y
Bui, D. T., Khosravi, K., Shahabi, H., Daggupati, P., Adamowski, J. F., M.Melesse, A., Pham, B. T., Pourghasemi, H. R., Mahmoudi, M., Bahrami, S., Pradhan, B., Shirzadi, A., Chapi, K., & Lee, S. (2019). Flood spatial modeling in Northern Iran using remote sensing and GIS: A comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131589
Costache, R. (2019). Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration. Stochastic Environmental Research and Risk Assessment, 33(7), 1375–1402. https://doi.org/10.1007/s00477-019-01689-9
Costache, R., Hong, H., & Pham, Q. B. (2020). Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Science of the Total Environment, 711, 134514. https://doi.org/10.1016/j.scitotenv.2019.134514
Dammalage, T. L., & Jayasinghe, N. T. (2019). Land-Use Change and Its Impact on Urban Flooding: A Case Study on Colombo District Flood on May 2016. Engineering, Technology & Applied Science Research, 9(2), 3887–3891. https://doi.org/10.48084/etasr.2578
Dano, U. L., Balogun, A. L., Matori, A. N., Yusouf, K. W., Abubakar, I. R., Mohamed, M. A. S., Aina, Y. A., & Pradhan, B. (2019). Flood susceptibility mapping using GIS-based analytic network process: A case study of Perlis, Malaysia. Water (Switzerland), 11(3). https://doi.org/10.3390/w11030615
Darabi, H., Choubin, B., Rahmati, O., Torabi Haghighi, A., Pradhan, B., & Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology, 569, 142–154. https://doi.org/10.1016/j.jhydrol.2018.12.002
Diaconu, D. C., Costache, R., & Popa, M. C. (2021). An overview of flood risk analysis methods. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040474
Domakinis, C., Mouratidis, A., Voudouris, K., Astaras, T., & Karypidou, M. C. (2020). Flood susceptibility mapping in erythropotamos river basin with the aid of remote sensing and GIS. Acta Universitatis Carolinae, Geographica, 55(2), 149–164. https://doi.org/10.14712/23361980.2020.11
Evangelista, A. S., Cavalcante, R. A., Ribeiro, C., Maria, J., & Silva, O. (2019, junho 11). Mapeamento Geomorfológico do Cariri: a utilização de mapas derivados do MDT. GEOGRAFIA FÍSICA E AS MUDANÇAS GLOBAIS, 1, 1–5. http://www.editora.ufc.br/images/imagens/pdf/geografia-fisica-e-as-mudancas-globais/980.pdf
Fernandes, R. de O., Costa, C. T. F. da, & Studart, T. M. de C. (2017). Soil conservation service. Revista Águas Subterrâneas, 31, 243–254. https://doi.org/10.1007/978-1-4020-3995-9_536
FUNCEME. 2012. Fundação Cearense de Meteorologia e Recursos Hídricos. Levantamento de Reconhecimento de Média Intensidade dos Solos da Mesorregião do Sul Cearense. Fortaleza. Disponível: http://www.funceme.br/?page_id=2787. Acesso: 23 jan. 2020.
Hussain, M., Tayyab, M., Zhang, J., Shah, A. A., Ullah, K., Mehmood, U., & Al‐shaibah, B. (2021). Gis‐based multi‐criteria approach for flood vulnerability assessment and mapping in district Shangla: Khyber Pakhtunkhwa, Pakistan. Sustainability (Switzerland), 13(6), 1–30. https://doi.org/10.3390/su13063126
IBGE. (2018). Instituto Brasileiro de Geografia e Estatística. Tabela número de municípios que sofreram com alagamentos (censo de 2010). Disponível: https://sidra.ibge.gov.br/tabela/2245. Acesso: 3 abr. 2020.
IBGE. (2018). Instituto Brasileiro de Geografia e Estatística. População estimada [2018] para Juazeiro do Norte - CE. Juazeiro do Norte. Disponível: https://cidades.ibge.gov.br/brasil/ce/juazeiro-do-norte/panorama. Acesso: 3 abr. 2020.
INMET, Instituto Nacional de Meteorologia. Série Histórica de 20 anos (1999-2019). Disponível: https://bdmep.inmet.gov.br/. Acesso: 3 abr. 2020.
Jahandideh-Tehrani, M., Zhang, H., Helfer, F., & Yu, Y. (2019). Review of climate change impacts on predicted river streamflow in tropical rivers. Environmental Monitoring and Assessment, 191(12), 1–23. https://doi.org/10.1007/s10661-019-7841-1
Londe, L. de R., Moura, L. G., Coutinho, M. P., Marchezini, V., & Soriano, E. (2018). Marchezini Desastres Naturais. Ambiente e Sociedade, 21, 2–24. http://www.scielo.br/pdf/asoc/v21/pt_1809-4422-asoc-21-e01022.pdf
Mahmoud, S. H., & Gan, T. Y. (2018). Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. Journal of Cleaner Production, 196, 216–229. https://doi.org/10.1016/j.jclepro.2018.06.047
Moura-Fé, M. M., Lima, M. T. V, Silva, M. J. A., & Monteiro, D. A. (2019, junho 11). Urbanização e ocupação das margens dos rios: insustentabilidade ambiental na Regiçao Metropolitana do Cariri (RMC), Ceará. GEOGRAFIA FÍSICA E AS MUDANÇAS GLOBAIS, December, 0–6. http://www.editora.ufc.br/images/imagens/pdf/geografia-fisica-e-as-mudancas-globais/581.pdf
Moura-fé, M. M., Pinheiro, M. V. A., Silva, J. V. M., & Nascimento, R. L. (2020). Geodiversidade, Patrimônio e Sustentabilidade na Região Metropolitana do Cariri (RMC), Ceará. In J. F. Sobrinho (Org.), Geodiversidade do Semiárido (p. 155–177). Sertão Cult. https://doi.org/10.35260/87429366
Pereira, C. (2013). Análise socioambiental da cidade de Juazeiro do Norte: subsídios para a construção da Agenda 21 local [UNESP]. In Aleph. http://hdl.handle.net/11449/104415
QGIS.org (2018). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.org
Sartori, A., NETO, F., & Genovez, A. (2005). Classificação Hidrológica de Solos Brasileiros para a Estimativa da Chuva Excedente com o Método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Revista Brasileira de Recursos Hídricos, 10(4), 5–18. https://doi.org/10.21168/rbrh.v10n4.p5-18
Serraj, R., & Pingali, P. (2018). Agriculture & Food Systems to 2050. In R Serraj & P. Pingali (Orgs.), Agriculture & Food Systems to 2050: Global Trends, Challenges and Opportunities (Vol. 2, Número November 2018, p. 3–45). World Scientific. https://doi.org/10.1142/9789813278356
Silva, E. L. e, Gurgel, H., & Freitas, C. M. de. (2019). Saúde e desastres no Brasil: uma reflexão sobre os aspectos envolvidos em eventos hidrológicos e rompimento de barragens Santé et catastrophes au Brésil: une réflexion sur les aspects liés aux événements hydrologiques et à la rupture de barrage Health and. Confins, 42. https://doi.org/10.4000/confins.23114
Soares Neto, G. B., Bayma, A. P., Babinski Neto, S., Roig, H. L., & Menezes, P. H. B. J. (2017). Análise de susceptibilidade a alagamento na bacia hidrográfica do Riacho Fundo – Distrito Federal por meio de Sistemas de Informação Geográfica – SIG. Territorium, 24, 77–87. https://doi.org/10.14195/1647-7723_24_6
Sofia, G., Roder, G., Dalla Fontana, G., & Tarolli, P. (2017). Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction. Scientific Reports, 7(July 2016), 1–12. https://doi.org/10.1038/srep40527
Sweya, L. N., & Wilkinson, S. (2020). A tool for measuring environmental resilience to floods in Tanzania water supply systems. Ecological Indicators, 112 (September 2019), 106165. https://doi.org/10.1016/j.ecolind.2020.106165
Teles, R. P., Silva, M. L. G. da, & Ribeiro, A. J. A. (2020). Revista Brasileira de Geografia Física. Revista Brasileira de Geografia Física, 06, 1275–1291.
Tien Bui, D., Hoang, N. D., Martínez-Álvarez, F., Ngo, P. T. T., Hoa, P. V., Pham, T. D., Samui, P., & Costache, R. (2020). A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Science of the Total Environment, 701, 134413. https://doi.org/10.1016/j.scitotenv.2019.134413
Towfiqul Islam, A. R. M., Talukdar, S., Mahato, S., Kundu, S., Eibek, K. U., Pham, Q. B., Kuriqi, A., & Linh, N. T. T. (2021). Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3), 101075. https://doi.org/10.1016/j.gsf.2020.09.006
Tucci, C. E. M. (Org.). Hidrologia: ciência e aplicação. Porto Alegre: Editora da Universidade, 1993. ISBN: 978-85-7025-924-0
Vojtek, M., & Vojteková, J. (2019). Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020364
Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., Khosravi, K., Shirzadi, A., Shahabi, H., Panahi, S., & Costache, R. (2019). Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of Environmental Management, 247(September 2018), 712–729.https://doi.org/10.1016/j.jenvman.2019.06.102
Wicaksono, A. D., Hidayah, E., & Wiyono, R. U. A. (2021). Adaptation, adaptive capacity and vulnerability. Global Environmental Change, 5(3), 282–292. https://doi.org/10.1016/j.gloenvcha.2006.03.008
Wu, F., Sun, Y., Sun, Z., Wu, S., & Zhang, Q. (2019). Assessing agricultural system vulnerability to floods: A hybrid approach using emergy and a landscape fragmentation index. Ecological Indicators, 105(June), 337–346. https://doi.org/10.1016/j.ecolind.2017.10.050
Xu, L., Wang, X., Liu, J., He, Y., Tang, J., Nguyen, M., & Cui, S. (2019). Identifying the trade-offs between climate change mitigation and adaptation in urban land use planning: An empirical study in a coastal city. Environment International, 133(April), 105162. https://doi.org/10.1016/j.envint.2019.105162
Yariyan, P., Avand, M., Abbaspour, R. A., Torabi Haghighi, A., Costache, R., Ghorbanzadeh, O., Janizadeh, S., & Blaschke, T. (2020). Flood susceptibility mapping using an improved analytic network process with statistical models. Geomatics, Natural Hazards and Risk, 11(1), 2282–2314. https://doi.org/10.1080/19475705.2020.1836036
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with Revista Brasileira de Geografia Física agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted to make their work available online before or during the editorial process, on academic social networks, digital repositories, or preprint servers. After publication in Revista Brasileira de Geografia Física, authors are expected to update the preprint or postprint versions on the platforms where they were originally made available, providing a link to the final published version and any other relevant information, with proper recognition of authorship and the initial publication in this journal.
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.